Role of bacteriophage T4 baseplate in regulating assembly and infection

被引:56
作者
Yap, Moh Lan [1 ]
Klose, Thomas [1 ]
Arisaka, Fumio [2 ]
Speir, Jeffrey A. [3 ]
Veesler, David [3 ,4 ]
Fokine, Andrei [1 ]
Rossmann, Michael G. [1 ]
机构
[1] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
[2] Nihon Univ, Coll Bioresource Sci, Fujisawa, Kanagawa 2520880, Japan
[3] Scripps Res Inst, Natl Resource Automated Mol Microscopy, La Jolla, CA 92037 USA
[4] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
关键词
bacteriophage T4; cryo-EM reconstruction; baseplate assembly; conformational changes; near-atomic resolution; VI SECRETION SYSTEM; GENETIC-CONTROL; IN-VIVO; TAIL; MORPHOGENESIS; MICROSCOPY; RESOLUTION; DOMAIN;
D O I
10.1073/pnas.1601654113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacteriophage T4 consists of a head for protecting its genome and a sheathed tail for inserting its genome into a host. The tail terminates with a multiprotein baseplate that changes its conformation from a "high-energy" dome-shaped to a "low-energy" star-shaped structure during infection. Although these two structures represent different minima in the total energy landscape of the baseplate assembly, as the dome-shaped structure readily changes to the star-shaped structure when the virus infects a host bacterium, the dome-shaped structure must have more energy than the star-shaped structure. Here we describe the electron microscopy structure of a 3.3-MDa in vitro-assembled star-shaped baseplate with a resolution of 3.8 angstrom. This structure, together with other genetic and structural data, shows why the high-energy baseplate is formed in the presence of the central hub and how the baseplate changes to the low-energy structure, via two steps during infection. Thus, the presence of the central hub is required to initiate the assembly of metastable, high-energy structures. If the high-energy structure is formed and stabilized faster than the low-energy structure, there will be insufficient components to assemble the low-energy structure.
引用
收藏
页码:2654 / 2659
页数:6
相关论文
共 50 条
  • [21] Response of the Bacteriophage T4 Replisome to Noncoding Lesions and Regression of a Stalled Replication Fork
    Nelson, Scott W.
    Benkovic, Stephen J.
    JOURNAL OF MOLECULAR BIOLOGY, 2010, 401 (05) : 743 - 756
  • [22] Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9
    Bryson, Alexandra L.
    Hwang, Young
    Sherrill-Mix, Scott
    Wu, Gary D.
    Lewis, James D.
    Black, Lindsay
    Clark, Tyson A.
    Bushman, Frederic D.
    MBIO, 2015, 6 (03):
  • [23] Structure and transformation of bacteriophage A511 baseplate and tail upon infection of Listeria cells
    Guerrero-Ferreira, Ricardo C.
    Hupfeld, Mario
    Nazarov, Sergey
    Taylor, Nicholas M. I.
    Shneider, Mikhail M.
    Obbineni, Jagan M.
    Loessner, Martin J.
    Ishikawa, Takashi
    Klumpp, Jochen
    Leiman, Petr G.
    EMBO JOURNAL, 2019, 38 (03)
  • [24] A Single-Molecule View of the Assembly Pathway, Subunit Stoichiometry, and Unwinding Activity of the Bacteriophage T4 Primosome (helicase-primase) Complex
    Lee, Wonbae
    Jose, Davis
    Phelps, Carey
    Marcus, Andrew H.
    von Hippel, Peter H.
    BIOCHEMISTRY, 2013, 52 (18) : 3157 - 3170
  • [25] Analyzing indirect secondary electron contrast of unstained bacteriophage T4 based on SEM images and Monte Carlo simulations
    Ogura, Toshihiko
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 380 (02) : 254 - 259
  • [26] Architecture of the Bacteriophage T4 Activator MotA/Promoter DNA Interaction during Sigma Appropriation
    Hsieh, Meng-Lun
    James, Tamara D.
    Knipling, Leslie
    Waddell, M. Brett
    White, Stephen
    Hinton, Deborah M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (38) : 27607 - 27618
  • [27] Baseplate Component TssK and Spatio-Temporal Assembly of T6SS in Pseudomonas aeruginosa
    Liebl, David
    Robert-Genthon, Mylene
    Job, Viviana
    Cogoni, Valentina
    Attree, Ina
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [28] Morphogenesis of the T4 tail and tail fibers
    Leiman, Petr G.
    Arisaka, Fumio
    van Raaij, Mark J.
    Kostyuchenko, Victor A.
    Aksyuk, Anastasia A.
    Kanamaru, Shuji
    Rossmann, Michael G.
    VIROLOGY JOURNAL, 2010, 7
  • [29] Role of Allosteric Switch Residue Histidine 195 in Maintaining Active-Site Asymmetry in Presynaptic Filaments of Bacteriophage T4 UvsX Recombinase
    Farb, Joshua N.
    Morrical, Scott W.
    JOURNAL OF MOLECULAR BIOLOGY, 2009, 385 (02) : 393 - 404
  • [30] A mutation in the gene for polynucleotide kinase of bacteriophage T4 K10 affects mRNA processing
    Strazdaite-Zieliene, Zivile
    Zajanckauskaite, Aurelija
    Kaliniene, Laura
    Meskys, Rolandas
    Truncaite, Lidija
    ARCHIVES OF VIROLOGY, 2014, 159 (02) : 327 - 331