Role of bacteriophage T4 baseplate in regulating assembly and infection

被引:56
作者
Yap, Moh Lan [1 ]
Klose, Thomas [1 ]
Arisaka, Fumio [2 ]
Speir, Jeffrey A. [3 ]
Veesler, David [3 ,4 ]
Fokine, Andrei [1 ]
Rossmann, Michael G. [1 ]
机构
[1] Purdue Univ, Dept Biol Sci, W Lafayette, IN 47907 USA
[2] Nihon Univ, Coll Bioresource Sci, Fujisawa, Kanagawa 2520880, Japan
[3] Scripps Res Inst, Natl Resource Automated Mol Microscopy, La Jolla, CA 92037 USA
[4] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
关键词
bacteriophage T4; cryo-EM reconstruction; baseplate assembly; conformational changes; near-atomic resolution; VI SECRETION SYSTEM; GENETIC-CONTROL; IN-VIVO; TAIL; MORPHOGENESIS; MICROSCOPY; RESOLUTION; DOMAIN;
D O I
10.1073/pnas.1601654113
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bacteriophage T4 consists of a head for protecting its genome and a sheathed tail for inserting its genome into a host. The tail terminates with a multiprotein baseplate that changes its conformation from a "high-energy" dome-shaped to a "low-energy" star-shaped structure during infection. Although these two structures represent different minima in the total energy landscape of the baseplate assembly, as the dome-shaped structure readily changes to the star-shaped structure when the virus infects a host bacterium, the dome-shaped structure must have more energy than the star-shaped structure. Here we describe the electron microscopy structure of a 3.3-MDa in vitro-assembled star-shaped baseplate with a resolution of 3.8 angstrom. This structure, together with other genetic and structural data, shows why the high-energy baseplate is formed in the presence of the central hub and how the baseplate changes to the low-energy structure, via two steps during infection. Thus, the presence of the central hub is required to initiate the assembly of metastable, high-energy structures. If the high-energy structure is formed and stabilized faster than the low-energy structure, there will be insufficient components to assemble the low-energy structure.
引用
收藏
页码:2654 / 2659
页数:6
相关论文
共 50 条
[21]   Response of the Bacteriophage T4 Replisome to Noncoding Lesions and Regression of a Stalled Replication Fork [J].
Nelson, Scott W. ;
Benkovic, Stephen J. .
JOURNAL OF MOLECULAR BIOLOGY, 2010, 401 (05) :743-756
[22]   Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9 [J].
Bryson, Alexandra L. ;
Hwang, Young ;
Sherrill-Mix, Scott ;
Wu, Gary D. ;
Lewis, James D. ;
Black, Lindsay ;
Clark, Tyson A. ;
Bushman, Frederic D. .
MBIO, 2015, 6 (03)
[23]   Structure and transformation of bacteriophage A511 baseplate and tail upon infection of Listeria cells [J].
Guerrero-Ferreira, Ricardo C. ;
Hupfeld, Mario ;
Nazarov, Sergey ;
Taylor, Nicholas M. I. ;
Shneider, Mikhail M. ;
Obbineni, Jagan M. ;
Loessner, Martin J. ;
Ishikawa, Takashi ;
Klumpp, Jochen ;
Leiman, Petr G. .
EMBO JOURNAL, 2019, 38 (03)
[24]   A Single-Molecule View of the Assembly Pathway, Subunit Stoichiometry, and Unwinding Activity of the Bacteriophage T4 Primosome (helicase-primase) Complex [J].
Lee, Wonbae ;
Jose, Davis ;
Phelps, Carey ;
Marcus, Andrew H. ;
von Hippel, Peter H. .
BIOCHEMISTRY, 2013, 52 (18) :3157-3170
[25]   Analyzing indirect secondary electron contrast of unstained bacteriophage T4 based on SEM images and Monte Carlo simulations [J].
Ogura, Toshihiko .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 380 (02) :254-259
[26]   Architecture of the Bacteriophage T4 Activator MotA/Promoter DNA Interaction during Sigma Appropriation [J].
Hsieh, Meng-Lun ;
James, Tamara D. ;
Knipling, Leslie ;
Waddell, M. Brett ;
White, Stephen ;
Hinton, Deborah M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (38) :27607-27618
[27]   Baseplate Component TssK and Spatio-Temporal Assembly of T6SS in Pseudomonas aeruginosa [J].
Liebl, David ;
Robert-Genthon, Mylene ;
Job, Viviana ;
Cogoni, Valentina ;
Attree, Ina .
FRONTIERS IN MICROBIOLOGY, 2019, 10
[28]   Morphogenesis of the T4 tail and tail fibers [J].
Leiman, Petr G. ;
Arisaka, Fumio ;
van Raaij, Mark J. ;
Kostyuchenko, Victor A. ;
Aksyuk, Anastasia A. ;
Kanamaru, Shuji ;
Rossmann, Michael G. .
VIROLOGY JOURNAL, 2010, 7
[29]   Role of Allosteric Switch Residue Histidine 195 in Maintaining Active-Site Asymmetry in Presynaptic Filaments of Bacteriophage T4 UvsX Recombinase [J].
Farb, Joshua N. ;
Morrical, Scott W. .
JOURNAL OF MOLECULAR BIOLOGY, 2009, 385 (02) :393-404
[30]   A mutation in the gene for polynucleotide kinase of bacteriophage T4 K10 affects mRNA processing [J].
Strazdaite-Zieliene, Zivile ;
Zajanckauskaite, Aurelija ;
Kaliniene, Laura ;
Meskys, Rolandas ;
Truncaite, Lidija .
ARCHIVES OF VIROLOGY, 2014, 159 (02) :327-331