Inverse scattering for Schrodinger operators with Miura potentials: I. Unique Riccati representatives and ZS-AKNS systems

被引:20
作者
Frayer, C. [1 ]
Hryniv, R. O. [2 ,3 ,4 ]
Mykytyuk, Ya V. [4 ]
Perry, P. A. [5 ]
机构
[1] Univ Wisconsin Platteville, Dept Math, Platteville, WI 53818 USA
[2] Inst Appl Problems Mech & Math, UA-79601 Lvov, Ukraine
[3] Univ Rzeszow, Inst Math, Rzeszow, Poland
[4] Lviv Franko Natl Univ, Dept Mech & Math, UA-79602 Lvov, Ukraine
[5] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
EQUATION; LINE; SPACE;
D O I
10.1088/0266-5611/25/11/115007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the first in a series of papers on scattering theory for one-dimensional Schrodinger operators with highly singular potentials q is an element of H(loc)(-1)(R). In this paper, we study Miura potentials q associated with positive Schrodinger operators that admit a Riccati representation q = u' + u(2) for a unique u is an element of L(1)(R) boolean AND L(2)(R). Such potentials have a well-defined reflection coefficient r(k) that satisfies vertical bar r(k)vertical bar < 1 and determines u uniquely. We show that the scattering map S : u -> r is real analytic with real-analytic inverse. To do so, we exploit a natural complexification of the scattering map associated with the ZS-AKNS system. In subsequent papers, we will consider larger classes of potentials including singular potentials with bound states.
引用
收藏
页数:25
相关论文
共 45 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   ON THE RIEMANN-HILBERT PROBLEM FOR THE ONE-DIMENSIONAL SCHRODINGER-EQUATION [J].
AKTOSUN, T ;
KLAUS, M ;
VANDERMEE, C .
JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (07) :2651-2690
[3]   Direct and inverse scattering for selfadjoint Hamiltonian systems on the line [J].
Aktosun, T ;
Klaus, M ;
van der Mee, C .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 38 (02) :129-171
[4]  
Albeverio S, 2005, RUSS J MATH PHYS, V12, P406
[5]   SCATTERING AND INVERSE SCATTERING FOR 1ST ORDER SYSTEMS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (01) :39-90
[6]   INVERSE SCATTERING AND EVOLUTION-EQUATIONS [J].
BEALS, R ;
COIFMAN, RR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1985, 38 (01) :29-42
[7]  
Beals R.R., 1988, Direct and inverse scattering on the line, V28
[8]   Dissipative eigenvalue problems for a Sturm-Liouville operator with a singular potential [J].
Bodenstorfer, B ;
Dijksma, A ;
Langer, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :1237-1257
[9]  
BROWN R, SOLUTIONS NONL UNPUB
[10]   SOLUTIONS TO THE CUBIC SCHRODINGER-EQUATION BY THE INVERSE SCATTERING METHOD [J].
COHEN, A ;
KAPPELER, T .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :900-922