Single-Marker and Two-Marker Association Tests for Unphased Case-Control Genotype Data, With a Power Comparison

被引:14
作者
Kim, Sulgi
Morris, Nathan J.
Won, Sungho [2 ]
Elston, Robert C. [1 ]
机构
[1] Case Western Reserve Univ, Sch Med, Dept Epidemiol & Biostat, Cleveland, OH 44106 USA
[2] Harvard Univ, Dept Biostat, Boston, MA 02115 USA
关键词
allele frequency contrast test; LD contrast test; HWD contrast test; genome-wide association; LINKAGE-DISEQUILIBRIUM PATTERNS; GENOME-WIDE ASSOCIATION; GENETIC ASSOCIATION; UNLINKED LOCI; HAPLOTYPES; TRAITS; DETECT; MODELS;
D O I
10.1002/gepi.20436
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In case-control single nucleotide polymorphism (SNP) data, the allele frequency, Hardy Weinberg Disequilibrium, and linkage disequilibrium (LD) contrast tests are three distinct sources of information about genetic association. While all three tests are typically developed in a retrospective context, we show that prospective logistic regression models may be developed that correspond conceptually to the retrospective tests. This approach provides a flexible framework for conducting a systematic series of association analyses using unphased genotype data and any number of covariates. For a single stage study, two single-marker tests and four two-marker tests are discussed. The true association models are derived and they allow us to understand why a model with only a linear term will generally fit well for a SNP in weak LID with a causal SNP, whatever the disease model, but not for a SNP in high LID with a non-additive disease SNP. We investigate the power of the association tests using real LD parameters from chromosome 11 in the HapMap CEU population data. Among the single-marker tests, the allelic test has on average the most power in the case of an additive disease, but for dominant, recessive, and heterozygote disadvantage diseases, the genotypic test has the most power. Among the four two-marker tests, the Allelic-LID contrast test, which incorporates linear terms for two markers and their interaction term, provides the most reliable power overall for the cases studied. Therefore, our result supports incorporating an interaction term as well as linear terms in multi-marker tests. Genet. Epidemiol. 34:67-77, 2010. (c) 2009 Wiley-Liss, Inc.
引用
收藏
页码:67 / 77
页数:11
相关论文
共 31 条
[1]   A haplotype map of the human genome [J].
Altshuler, D ;
Brooks, LD ;
Chakravarti, A ;
Collins, FS ;
Daly, MJ ;
Donnelly, P ;
Gibbs, RA ;
Belmont, JW ;
Boudreau, A ;
Leal, SM ;
Hardenbol, P ;
Pasternak, S ;
Wheeler, DA ;
Willis, TD ;
Yu, FL ;
Yang, HM ;
Zeng, CQ ;
Gao, Y ;
Hu, HR ;
Hu, WT ;
Li, CH ;
Lin, W ;
Liu, SQ ;
Pan, H ;
Tang, XL ;
Wang, J ;
Wang, W ;
Yu, J ;
Zhang, B ;
Zhang, QR ;
Zhao, HB ;
Zhao, H ;
Zhou, J ;
Gabriel, SB ;
Barry, R ;
Blumenstiel, B ;
Camargo, A ;
Defelice, M ;
Faggart, M ;
Goyette, M ;
Gupta, S ;
Moore, J ;
Nguyen, H ;
Onofrio, RC ;
Parkin, M ;
Roy, J ;
Stahl, E ;
Winchester, E ;
Ziaugra, L ;
Shen, Y .
NATURE, 2005, 437 (7063) :1299-1320
[2]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[3]   Detecting disease associations due to linkage disequilibrium using haplotype tags: A class of tests and the determinants of statistical power [J].
Chapman, JM ;
Cooper, JD ;
Todd, JA ;
Clayton, DG .
HUMAN HEREDITY, 2003, 56 (1-3) :18-31
[4]   Use of unphased multilocus genotype data in indirect association studies [J].
Clayton, D ;
Chapman, J ;
Cooper, J .
GENETIC EPIDEMIOLOGY, 2004, 27 (04) :415-428
[5]   SNPs, haplotypes, and model selection in a candidate gene region: The SIMPle analysis for multilocus data [J].
Conti, DV ;
Gauderman, WJ .
GENETIC EPIDEMIOLOGY, 2004, 27 (04) :429-441
[6]   Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans [J].
Cordell, HJ .
HUMAN MOLECULAR GENETICS, 2002, 11 (20) :2463-2468
[7]   A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data:: Application to HLA in type 1 diabetes [J].
Cordell, HJ ;
Clayton, DG .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (01) :124-141
[8]   IMPLICIT ALTERNATIVES AND THE LOCAL-POWER OF TEST STATISTICS [J].
DAVIDSON, R ;
MACKINNON, JG .
ECONOMETRICA, 1987, 55 (06) :1305-1329
[9]   Analysis of multilocus models of association [J].
Devlin, B ;
Roeder, K ;
Wasserman, L .
GENETIC EPIDEMIOLOGY, 2003, 25 (01) :36-47
[10]   The generalization of Student's ratio [J].
Hotelling, H .
ANNALS OF MATHEMATICAL STATISTICS, 1931, 2 :360-378