Spectral-element analysis in seismology

被引:174
作者
Chaljub, Emmanuel
Komatitsch, Dimitri
Vilotte, Jean-Pierre
Capdeville, Yann
Valette, Bernard
Festa, Gaetano
机构
[1] Lab Geophys Interne & Tectonophys, F-38041 Grenoble 9, France
[2] CALTECH, Seismol Lab, Pasadena, CA 91125 USA
[3] Inst Phys Globe, F-75252 Paris 05, France
[4] Univ Savoie, IRD, Lab Geophys Interne & Tectonphys, F-73376 Le Bourget Du Lac, France
来源
ADVANCES IN GEOPHYSICS, VOL 48: ADVANCES IN WAVE PROPAGATION IN HETEROGENEOUS EARTH | 2007年 / 48卷
关键词
DtN operator; elastodynamics; global seismology; regional seismology; numerical modeling; perfectly matched layers; potential formulation; self-gravitation; spectral-element method; surface waves; synthetic seismograms; topography;
D O I
10.1016/S0065-2687(06)48007-9
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We present a review of the application of the spectral-element method to regional and global seismology. This technique is a high-order variational method that allows one to compute accurate synthetic seismograms in three-dimensional heterogeneous Earth models with deformed geometry. We first recall the strong and weak forms of the seismic wave equation with a particular emphasis set on fluid regions. We then discuss in detail how the conditions that hold on the boundaries, including coupling boundaries, are honored. We briefly outline the spectral-element discretization procedure and present the time-marching algorithm that makes use of the diagonal structure of the mass matrix. We show examples that illustrate the capabilities of the method and its interest in the context of the computation of three-dimensional synthetic seismograms.
引用
收藏
页码:365 / 419
页数:55
相关论文
共 132 条
[1]  
Aki K., 1980, QUANTITATIVE SEISMOL
[2]   ACCURACY OF FINITE-DIFFERENCE MODELING OF ACOUSTIC-WAVE EQUATION [J].
ALFORD, RM ;
KELLY, KR ;
BOORE, DM .
GEOPHYSICS, 1974, 39 (06) :834-842
[3]  
ALTERMAN Z, 1968, B SEISMOL SOC AM, V58, P367
[4]  
AMPUERO JP, 2002, THESIS I PHYS GLOBE
[5]  
[Anonymous], 2002, GEOL FR
[6]  
[Anonymous], 1999, ESTIMATION EPAISSEUR
[7]  
[Anonymous], 1992, LECT NOTES PHYS
[8]   Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers [J].
Bao, HS ;
Bielak, J ;
Ghattas, O ;
Kallivokas, LF ;
O'Hallaron, DR ;
Shewchuk, JR ;
Xu, JF .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 152 (1-2) :85-102
[9]  
BARD PY, 1980, B SEISMOL SOC AM, V70, P1263
[10]  
BARD PY, 1980, B SEISMOL SOC AM, V70, P1921