Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO2 conversion and valorisation

被引:79
作者
Fernandes, Diana M. [1 ]
Peixoto, Andreia F. [1 ]
Freire, Cristina [1 ]
机构
[1] Univ Porto, Fac Ciencias, Dept Quim & Bioquim, REQUIMTE LAQV, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
关键词
HIGHLY EFFICIENT CATALYST; GRAPHENE-BASED MATERIALS; ELECTROCHEMICAL REDUCTION; CYCLIC CARBONATES; ELECTROCATALYTIC REDUCTION; MESOPOROUS CARBON; HETEROGENEOUS ELECTROCATALYSTS; ORGANIC FRAMEWORKS; DIOXIDE CAPTURE; RECENT PROGRESS;
D O I
10.1039/c9dt01691k
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Carbon dioxide (CO2) is regarded as the main contributor to the greenhouse effect. As a potential strategy to mitigate its negative impacts, the reduction of CO2 is environmentally critical, economically meaningful and scientifically challenging. Concerns regarding anthropogenic emissions have recently sparked interest in the CO2 chemical transformation techniques. Being both thermodynamically and kinetically unfavorable, CO2 conversion generally requires efficient metal-based catalysts although they have multiple competitive disadvantages such as high costs, low availability and detrimental effects on the environment. A new class of catalysts based on earth-abundant carbon materials has been considered as an efficient, low-cost, metal-free alternative for both the capture and catalytic or electrocatalytic conversion of CO2. CO2 electrochemical reduction (CO2RR) offers a new and important pathway towards renewable energy storage and production of fuels, and CO2 cycloaddition with epoxides to cyclic or polymeric carbonates opens up new prospects for the production of polymers and fine chemicals. This review provides an overview of the progresses made in nitrogen-doped metal-free carbon catalysts for CO2 electrochemical conversion and CO2 conversion into cyclic carbonates into useful fuels and chemicals with a focus on the results underlying their mechanistic behavior, advantages and/or limitations of this metal-free N-doped carbon catalysts on CO2 conversion and valorisation.
引用
收藏
页码:13508 / 13528
页数:21
相关论文
共 147 条
[11]   Preparation and Application of Biochar-Based Catalysts for Biofuel Production [J].
Cheng, Feng ;
Li, Xiuwei .
CATALYSTS, 2018, 8 (09)
[12]   B, N- and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media [J].
Choi, Chang Hyuck ;
Chung, Min Wook ;
Kwon, Han Chang ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) :3694-3699
[13]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[14]   Selective Etching of Nitrogen-Doped Carbon by Steam for Enhanced Electrochemical CO2 Reduction [J].
Cui, Xiaoqi ;
Pan, Zhiyong ;
Zhang, Lijuan ;
Peng, Huisheng ;
Zheng, Gengfeng .
ADVANCED ENERGY MATERIALS, 2017, 7 (22)
[15]   Identification of electron donor states in N-doped carbon nanotubes [J].
Czerw, R ;
Terrones, M ;
Charlier, JC ;
Blase, X ;
Foley, B ;
Kamalakaran, R ;
Grobert, N ;
Terrones, H ;
Tekleab, D ;
Ajayan, PM ;
Blau, W ;
Rühle, M ;
Carroll, DL .
NANO LETTERS, 2001, 1 (09) :457-460
[16]   Carbon Dioxide Capture: Prospects for New Materials [J].
D'Alessandro, Deanna M. ;
Smit, Berend ;
Long, Jeffrey R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (35) :6058-6082
[17]   Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction [J].
Daems, Nick ;
Sheng, Xia ;
Vankelecom, Ivo F. J. ;
Pescarmona, Paolo P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (12) :4085-4110
[18]   Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors [J].
Deng, Yuanfu ;
Xie, Ye ;
Zou, Kaixiang ;
Ji, Xiulei .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (04) :1144-1173
[19]   Carbon capture and conversion using metal-organic frameworks and MOF-based materials [J].
Ding, Meili ;
Flaig, Robinson W. ;
Jiang, Hai-Long ;
Yaghi, Omar M. .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (10) :2783-2828
[20]   A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated into a Carbon Lattice [J].
Ding, Yuxiao ;
Huang, Xing ;
Yi, Xianfeng ;
Qiao, Yunxiang ;
Sun, Xiaoyan ;
Zheng, Anmin ;
Su, Dang Sheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (42) :13800-13804