Variant Interpretation for Cancer (VIC): a computational tool for assessing clinical impacts of somatic variants

被引:36
作者
He, Max M. [1 ,2 ]
Li, Quan [3 ]
Yan, Muqing [1 ]
Cao, Hui [1 ]
Hu, Yue [1 ]
He, Karen Y. [4 ]
Cao, Kajia [5 ]
Li, Marilyn M. [5 ,6 ]
Wang, Kai [3 ,6 ]
机构
[1] Simcere Diagnost Co Ltd, Nanjing 210042, Jiangsu, Peoples R China
[2] State Key Lab Translat Med & Innovat Drug Dev, Nanjing 210042, Jiangsu, Peoples R China
[3] Childrens Hosp Philadelphia, Raymond G Perelman Ctr Cellular & Mol Therapeut, Philadelphia, PA 19104 USA
[4] Case Western Reserve Univ, Dept Populat & Quantitat Hlth Sci, Cleveland, OH 44106 USA
[5] Childrens Hosp Philadelphia, Dept Pathol & Lab Med, Div Genom Diagnost, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
关键词
Somatic variant interpretation; Genetic diagnosis; Cancer genetics; Standards and guidelines; JOINT-CONSENSUS-RECOMMENDATION; AMINO-ACID SUBSTITUTIONS; SEQUENCE VARIANTS; GENETIC-VARIATION; MUTATIONS; ASSOCIATION; GUIDELINES; STANDARDS; DATABASE; COLLEGE;
D O I
10.1186/s13073-019-0664-4
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background Clinical laboratories implement a variety of measures to classify somatic sequence variants and identify clinically significant variants to facilitate the implementation of precision medicine. To standardize the interpretation process, the Association for Molecular Pathology (AMP), American Society of Clinical Oncology (ASCO), and College of American Pathologists (CAP) published guidelines for the interpretation and reporting of sequence variants in cancer in 2017. These guidelines classify somatic variants using a four-tiered system with ten criteria. Even with the standardized guidelines, assessing clinical impacts of somatic variants remains to be tedious. Additionally, manual implementation of the guidelines may vary among professionals and may lack reproducibility when the supporting evidence is not documented in a consistent manner. Results We developed a semi-automated tool called "Variant Interpretation for Cancer" (VIC) to accelerate the interpretation process and minimize individual biases. VIC takes pre-annotated files and automatically classifies sequence variants based on several criteria, with the ability for users to integrate additional evidence to optimize the interpretation on clinical impacts. We evaluated VIC using several publicly available databases and compared with several predictive software programs. We found that VIC is time-efficient and conservative in classifying somatic variants under default settings, especially for variants with strong and/or potential clinical significance. Additionally, we also tested VIC on two cancer-panel sequencing datasets to show its effectiveness in facilitating manual interpretation of somatic variants. Conclusions Although VIC cannot replace human reviewers, it will accelerate the interpretation process on somatic variants. VIC can also be customized by clinical laboratories to fit into their analytical pipelines to facilitate the laborious process of somatic variant interpretation. VIC is freely available at https://github.com/HGLab/VIC/.
引用
收藏
页数:14
相关论文
共 32 条
  • [1] A method and server for predicting damaging missense mutations
    Adzhubei, Ivan A.
    Schmidt, Steffen
    Peshkin, Leonid
    Ramensky, Vasily E.
    Gerasimova, Anna
    Bork, Peer
    Kondrashov, Alexey S.
    Sunyaev, Shamil R.
    [J]. NATURE METHODS, 2010, 7 (04) : 248 - 249
  • [2] DoCM: a database of curated mutations in cancer
    Ainscough, Benjamin J.
    Griffith, Malachi
    Coffman, Adam C.
    Wagner, Alex H.
    Kunisaki, Jason
    Choudhary, Mayank N. K.
    McMichael, Joshua F.
    Fulton, Robert S.
    Wilson, Richard K.
    Griffith, Obi L.
    Mardis, Elaine R.
    [J]. NATURE METHODS, 2016, 13 (10) : 806 - 807
  • [3] High epidermal growth factor receptor amplification rate but tow mutation frequency in Middle East lung cancer population
    Al-Kuraya, K
    Siraj, AK
    Bavi, P
    Al-Jommah, N
    Ezzat, A
    Sheikh, S
    Amr, S
    Al-Dayel, F
    Simon, R
    Guido, S
    [J]. HUMAN PATHOLOGY, 2006, 37 (04) : 453 - 457
  • [4] An integrated map of genetic variation from 1,092 human genomes
    Altshuler, David M.
    Durbin, Richard M.
    Abecasis, Goncalo R.
    Bentley, David R.
    Chakravarti, Aravinda
    Clark, Andrew G.
    Donnelly, Peter
    Eichler, Evan E.
    Flicek, Paul
    Gabriel, Stacey B.
    Gibbs, Richard A.
    Green, Eric D.
    Hurles, Matthew E.
    Knoppers, Bartha M.
    Korbel, Jan O.
    Lander, Eric S.
    Lee, Charles
    Lehrach, Hans
    Mardis, Elaine R.
    Marth, Gabor T.
    McVean, Gil A.
    Nickerson, Deborah A.
    Schmidt, Jeanette P.
    Sherry, Stephen T.
    Wang, Jun
    Wilson, Richard K.
    Gibbs, Richard A.
    Dinh, Huyen
    Kovar, Christie
    Lee, Sandra
    Lewis, Lora
    Muzny, Donna
    Reid, Jeff
    Wang, Min
    Wang, Jun
    Fang, Xiaodong
    Guo, Xiaosen
    Jian, Min
    Jiang, Hui
    Jin, Xin
    Li, Guoqing
    Li, Jingxiang
    Li, Yingrui
    Li, Zhuo
    Liu, Xiao
    Lu, Yao
    Ma, Xuedi
    Su, Zhe
    Tai, Shuaishuai
    Tang, Meifang
    [J]. NATURE, 2012, 491 (7422) : 56 - 65
  • [5] Chakravarty Debyani, 2017, JCO Precis Oncol, V2017, DOI 10.1200/PO.17.00011
  • [6] Comprehensive detection of germline variants by MSK-IMPACT, a clinical diagnostic platform for solid tumor molecular oncology and concurrent cancer predisposition testing
    Cheng, Donavan T.
    Prasad, Meera
    Chekaluk, Yvonne
    Benayed, Ryma
    Sadowska, Justyna
    Zehir, Ahmet
    Syed, Aijazuddin
    Wang, Yan Elsa
    Somar, Joshua
    Li, Yirong
    Yelskaya, Zarina
    Wong, Donna
    Robson, Mark E.
    Offit, Kenneth
    Berger, Michael F.
    Nafa, Khedoudja
    Ladanyi, Marc
    Zhang, Liying
    [J]. BMC MEDICAL GENOMICS, 2017, 10
  • [7] PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels
    Choi, Yongwook
    Chan, Agnes P.
    [J]. BIOINFORMATICS, 2015, 31 (16) : 2745 - 2747
  • [8] Choi YH, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0039927, 10.1371/journal.pone.0046688]
  • [9] A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
    Cingolani, Pablo
    Platts, Adrian
    Wang, Le Lily
    Coon, Melissa
    Tung Nguyen
    Wang, Luan
    Land, Susan J.
    Lu, Xiangyi
    Ruden, Douglas M.
    [J]. FLY, 2012, 6 (02) : 80 - 92
  • [10] Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP plus
    Davydov, Eugene V.
    Goode, David L.
    Sirota, Marina
    Cooper, Gregory M.
    Sidow, Arend
    Batzoglou, Serafim
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (12)