Efficient Classification via Partial Co-Training for Virtual Metrology

被引:0
|
作者
Nguyen, Cuong [1 ]
Li, Xin [1 ]
Blanton, Shawn [1 ]
Li, Xiang [2 ]
机构
[1] Carnegie Mellon Univ, Dept Elect & Comp Engn, Pittsburgh, PA 15213 USA
[2] ASTAR, Singapore Inst Mfg Technol, Singapore, Singapore
来源
2020 25TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA) | 2020年
关键词
co-training; multi-view learning; semi-supervised learning;
D O I
10.1109/etfa46521.2020.9212012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Developing accurate and cost-effective classification techniques to facilitate virtual metrology is a critical task for modern manufacturing. In this paper, we consider the scenario in which labeling data is expensive, causing a shortage of labeled data. As a consequence, conventional classification methods suffer from a high risk of overfitting. To address this issue, we develop a novel semi-supervised classification method, namely Partial Co-training with Logistic Regression (PCT-LR). PCT-LR finds a subset of the original features to generate a partial view, and uses this partial view to provide side information to support the complete view that includes all features. Both views are co-optimized in a Bayesian inference with a Gaussian process prior and a logistic regression classifier. The proposed method is validated with two industrial examples. Experiment results suggest that the amount of required labeled data can be reduced by up to 18% without loss in accuracy.
引用
收藏
页码:753 / 760
页数:8
相关论文
共 50 条
  • [21] Network traffic classification based on ensemble learning and co-training
    He HaiTao
    Luo XiaoNan
    Ma FeiTeng
    Che ChunHui
    Wang JianMin
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (02): : 338 - 346
  • [22] Semi-Supervised Classification with Co-training for Deep Web
    Fang Wei
    Cui Zhiming
    ADVANCED MEASUREMENT AND TEST, PARTS 1 AND 2, 2010, 439-440 : 183 - +
  • [23] Catalyst: Combining Co-training and Active Learning for Lifelong Classification
    Ryndin, Maxim A.
    Turdakov, Denis Y.
    Kuznetsov, Sergey D.
    2020 IVANNIKOV ISPRAS OPEN CONFERENCE (ISPRAS 2020), 2020, : 96 - 101
  • [24] Network traffic classification based on ensemble learning and co-training
    HE HaiTao1
    2 Key Laboratory of Digital Life (Sun Yat-sen University)
    3 Information and Network Center
    Science China(Information Sciences), 2009, (02) : 338 - 346
  • [25] CO-TRAINING SUCCEEDS IN COMPUTATIONAL PARALINGUISTICS
    Zhang, Zixing
    Deng, Jun
    Schuller, Bjoern
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 8505 - 8509
  • [26] Co-Training for Handwritten Word Recognition
    Frinken, Volkmar
    Fischer, Andreas
    Bunke, Horst
    Fornes, Alicia
    11TH INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR 2011), 2011, : 314 - 318
  • [27] Co-training with relevant random subspaces
    Yaslan, Yusuf
    Cataltepe, Zehra
    NEUROCOMPUTING, 2010, 73 (10-12) : 1652 - 1661
  • [28] Deep Co-Training Active Learning for Mammographic Images Classification
    Yang, Zhikai
    Wu, Wei
    Zhang, Jingyang
    Zhao, Yu
    Gu, Lixu
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1059 - 1062
  • [29] Semi-Supervised Extractive Speech Summarization via Co-Training Algorithm
    Xie, Shasha
    Lin, Hui
    Liu, Yang
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 2526 - +
  • [30] Co-training study for Online Regression
    Sousa, Ricardo
    Gama, Joao
    33RD ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2018, : 529 - 531