The impact of misspecification of nuisance parameters on test for homogeneity in zero-inflated Poisson model: A simulation study

被引:0
|
作者
Gao, Siyu [1 ,2 ]
Zhang, Qianqian [3 ]
Yu, Jing [4 ,5 ]
机构
[1] China Univ Geosci, Sch Econ & Management & Lib, Wuhan, Hubei, Peoples R China
[2] Kansas State Univ, Dept Stat, Manhattan, KS 66506 USA
[3] China Univ Geosci, Dept Finance, Wuhan, Hubei, Peoples R China
[4] China Univ Geosci, Sch Econ & Management, Wuhan 430074, Hubei, Peoples R China
[5] China Univ Geosci, Resources Environm Econ Res Ctr, Wuhan, Hubei, Peoples R China
关键词
Zero-inflated Poisson model; Score test; Misspecification; Nuisance parameter; SCORE TESTS; RATIO;
D O I
10.1080/03610918.2019.1646758
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Most of the existing methodologies for evaluating heterogeneity in zero-inflated Poisson (ZIP) models are often assuming that the Poisson mean is a function of nuisance parameters. However, these nuisance parameters can be misspecified when performing these methodologies, the validity and the power of the test may be affected. In this article, we primarily focus on investigating the impact of misspecification on the performance of score test for homogeneity in ZIP models. Through an intensive simulation study, we find that: 1) under misspecification, the limiting distribution of the score test statistic under the null no longer follows a distribution. A parametric bootstrap methodology is suggested to use to find the true null limiting distribution of the score test statistic; 2) the power of the test decreases as the number of covariates in the Poisson mean increases. The test with a constant Poisson mean has the highest power, even compared to the test with a well-specified mean. At last, simulation results are applied to the Wuhan Inpatient Care Insurance data which contain excess zeros.
引用
收藏
页码:84 / 98
页数:15
相关论文
共 50 条
  • [1] On testing for homogeneity with zero-inflated models through the lens of model misspecification
    Hsu, Wei-Wen
    Mawella, Nadeesha R.
    Todem, David
    INTERNATIONAL STATISTICAL REVIEW, 2022, 90 (01) : 62 - 77
  • [2] Inference for the Parameters of a Zero-Inflated Poisson Predictive Model
    Deng, Min
    Aminzadeh, Mostafa S.
    So, Banghee
    RISKS, 2024, 12 (07)
  • [3] Testing Homogeneity of Two Zero-inflated Poisson Populations
    Tse, Sin Keung
    Chow, Shein Chung
    Lu, Qingshu
    Cosmatos, Dennis
    BIOMETRICAL JOURNAL, 2009, 51 (01) : 159 - 170
  • [4] Score test for testing zero-inflated Poisson regression against zero-inflated generalized Poisson alternatives
    Zamani, Hossein
    Ismail, Noriszura
    JOURNAL OF APPLIED STATISTICS, 2013, 40 (09) : 2056 - 2068
  • [5] A study of the score test in discrimination poisson and zero-inflated poisson models
    Peres da Silva, Vanessa Siqueira
    Cirillo, Marcelo Angelo
    Cespedes, Juliana Garcia
    ACTA SCIENTIARUM-TECHNOLOGY, 2013, 35 (02) : 333 - 337
  • [6] A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives
    Ridout, M
    Hinde, J
    Demétrio, CGB
    BIOMETRICS, 2001, 57 (01) : 219 - 223
  • [7] Conditional tests for homogeneity of zero-inflated Poisson and Poisson-hurdle distributions
    Bedrick, Edward J.
    Hossain, Anwar
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 61 : 99 - 106
  • [8] A score test for overdispersion in zero-inflated poisson mixed regression model
    Xiang, Liming
    Lee, Andy H.
    Yau, Kelvin K. W.
    McLachlan, Geoffrey J.
    STATISTICS IN MEDICINE, 2007, 26 (07) : 1608 - 1622
  • [9] A zero-inflated overdispersed hierarchical Poisson model
    Kassahun, Wondwosen
    Neyens, Thomas
    Faes, Christel
    Molenberghs, Geert
    Verbeke, Geert
    STATISTICAL MODELLING, 2014, 14 (05) : 439 - 456
  • [10] Testing overdispersion in the zero-inflated Poisson model
    Yang, Zhao
    Hardin, James W.
    Addy, Cheryl L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (09) : 3340 - 3353