Severe Dengue Prognosis Using Human Genome Data and Machine Learning

被引:43
作者
Davi, Caio [1 ]
Pastor, Andre [2 ]
Oliveira, Thiego [3 ]
de Lima Neto, Fernando B. [3 ]
Braga-Neto, Ulisses [4 ]
Bigham, Abigail W. [5 ]
Bamshad, Michael [6 ]
Marques, Ernesto T. A. [7 ]
Acioli-Santos, Bartolomeu [8 ]
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, Pernambuco Fed Inst Educ, College Stn, TX 77843 USA
[2] Sertao Pernambucano Fed Inst Educ Sci & Technol, Petrolina, PE, Brazil
[3] Univ Pernambuco, Dept Comp Engn, Recife, PE, Brazil
[4] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[5] Univ Michigan, Dept Anthropol, Ann Arbor, MI 48109 USA
[6] Univ Washington, Seattle, WA 98195 USA
[7] Univ Pittsburgh, Dept Infect Dis & Microbiol, Grad Sch Publ Hlth, Pittsburgh, PA 15260 USA
[8] Oswaldo Cruz Fundat, Dept Virol, Aggeu Magalhaes Inst, Recife, PE, Brazil
关键词
Dengue genetics; severe dengue; complex genome signatures; machine learning; T-CELL RESPONSES; HEMORRHAGIC-FEVER; CROSS-VALIDATION; IMMUNE ACTIVATION; VIRUS-INFECTIONS; GENE-EXPRESSION; SHOCK SYNDROME; CLASSIFICATION; POLYMORPHISMS; CANCER;
D O I
10.1109/TBME.2019.2897285
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Dengue has become one of the most important worldwide arthropod-borne diseases. Dengue phenotypes are based on laboratorial and clinical exams, which are known to be inaccurate. Objective: We present a machine learning approach for the prediction of dengue fever severity based solely on human genome data. Methods: One hundred and two Brazilian dengue patients and controls were genotyped for 322 innate immunity single nucleotide polymorphisms (SNPs). Our model uses a support vector machine algorithm to find the optimal loci classification subset and then an artificial neural network (ANN) is used to classify patients into dengue fever or severe dengue. Results: The ANN trained on 13 key immune SNPs selected under dominant or recessive models produced median values of accuracy greater than 86%, and sensitivity and specificity over 98% and 51%, respectively. Conclusion: The proposed classification method, using only genome markers, can be used to identify individuals at high risk for developing the severe dengue phenotype even in un-infected conditions. Significance: Our results suggest that the genetic context is a key element in phenotype definition in dengue. The methodology proposed here is extendable to other Mendelian based and genetically influenced diseases.
引用
收藏
页码:2861 / 2868
页数:8
相关论文
共 81 条
[31]   Classification of Dengue Fever Patients Based on Gene Expression Data Using Support Vector Machines [J].
Gomes, Ana Lisa V. ;
Wee, Lawrence J. K. ;
Khan, Asif M. ;
Gil, Laura H. V. G. ;
Marques, Ernesto T. A., Jr. ;
Calzavara-Silva, Carlos E. ;
Tan, Tin Wee .
PLOS ONE, 2010, 5 (06)
[32]   Current prospects of type II interferon signaling and autoimmunity [J].
Green, Daniel S. ;
Young, Howard A. ;
Valencia, Julio C. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2017, 292 (34) :13925-13933
[33]   Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever [J].
Green, S ;
Pichyangkul, S ;
Vaughn, DW ;
Kalayanarooj, S ;
Nimmannitya, S ;
Nisalak, A ;
Kurane, I ;
Rothman, AL ;
Ennis, FA .
JOURNAL OF INFECTIOUS DISEASES, 1999, 180 (05) :1429-1435
[34]   Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity [J].
Green, S ;
Vaughn, DW ;
Kalayanarooj, S ;
Nimmannitya, S ;
Suntayakorn, S ;
Nisalak, A ;
Lew, R ;
Innis, BL ;
Kurane, I ;
Rothman, AL ;
Ennis, FA .
JOURNAL OF INFECTIOUS DISEASES, 1999, 179 (04) :755-762
[35]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[36]   Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody-dependent enhancement of infection [J].
Guzman, Maria G. ;
Alvarez, Mayling ;
Halstead, Scott B. .
ARCHIVES OF VIROLOGY, 2013, 158 (07) :1445-1459
[37]   Recognition of pathogen-associated nucleic acids by endosomal nucleic acid-sensing toll-like receptors [J].
He, Xiaobing ;
Jia, Huaijie ;
Jing, Zhizhong ;
Liu, Dingxiang .
ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2013, 45 (04) :241-258
[38]   Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus [J].
Hsieh, Ming-Fang ;
Lai, Szu-Liang ;
Chen, Jia-Perng ;
Sung, Jui-Ming ;
Lin, Yi-g Lin ;
Wu-Hsieh, Betty A. ;
Gerard, Craig ;
Luster, Andrew ;
Liao, Fang .
JOURNAL OF IMMUNOLOGY, 2006, 177 (03) :1855-1863
[39]   Applications of Support Vector Machine (SVM) Learning in Cancer Genomics [J].
Huang, Shujun ;
Cai, Nianguang ;
Pacheco, Pedro Penzuti ;
Narandes, Shavira ;
Wang, Yang ;
Xu, Wayne .
CANCER GENOMICS & PROTEOMICS, 2018, 15 (01) :41-51
[40]   A functional SNP of interferon-γ gene is important for interferon-α-induced and spontaneous recovery from hepatitis C virus infection [J].
Huang, Ying ;
Yang, Huiying ;
Borg, Brian B. ;
Su, Xiaowen ;
Rhodes, Shannon L. ;
Yang, Kai ;
Tong, Xiaomei ;
Tang, George ;
Howell, Charles D. ;
Rosen, Hugo R. ;
Thio, Chloe L. ;
Thomas, David L. ;
Alter, Harvey J. ;
Sapp, Ronda K. ;
Liang, T. Jake .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (03) :985-990