Frequency domain analysis of 3ω-scanning thermal microscope probe-Application to tip/surface thermal interface measurements in vacuum environment

被引:9
作者
Pernot, G. [1 ]
Metjari, A. [1 ]
Chaynes, H. [1 ]
Weber, M. [1 ]
Isaiev, M. [1 ]
Lacroix, D. [1 ]
机构
[1] Univ Lorraine, CNRS, LEMTA, F-54000 Nancy, France
基金
瑞士国家科学基金会;
关键词
CONDUCTIVITY; CALIBRATION; NANOSCALE;
D O I
10.1063/5.0020975
中图分类号
O59 [应用物理学];
学科分类号
摘要
The characterization of material thermal properties at nanoscales remains a challenge even if progress was achieved in developing outstanding characterization techniques like scanning thermal microscopy (SThM). In the present work, we propose a detailed procedure based on the combined use of a SThM probe characterization and its Finite Element Method (FEM) modeling to recover in operando 3 omega measurements achieved under high vacuum. This approach is based on a two-step methodology: (i) a fine description of the probe's electrical and frequency behaviors in "out of contact" mode to determine the intrinsic parameters of the SThM tip and (ii) a minimization of the free parameter of our model, i.e., the contact thermal resistance, by comparing 3 omega measurements with the simulations of the probe operating "in contact mode." Such an approach allows us to measure thermal interface resistances between the tip and the surface. We applied our methodology to three different materials with known thermal properties: Si, SiO2 bulk materials, and a gold thin film. In addition, the FEM modeling provides insights into SThM thermal probes sensitivity, as a function of probe/sample interface resistance and the contact area to measure material thermal conductivity paving the way to quantitative SThM measurements.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Evolution of the adsorbed water layer structure on silicon oxide at room temperature [J].
Asay, DB ;
Kim, SH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (35) :16760-16763
[2]   Temperature-dependent capillary forces at nano-contacts for estimating the heat conduction through a water meniscus [J].
Assy, Ali ;
Gomes, Severine .
NANOTECHNOLOGY, 2015, 26 (35)
[3]   Heat transfer at nanoscale contacts investigated with scanning thermal microscopy [J].
Assy, Ali ;
Gomes, Severine .
APPLIED PHYSICS LETTERS, 2015, 107 (04)
[4]   Analysis of heat transfer in the water meniscus at the tip-sample contact in scanning thermal microscopy [J].
Assy, Ali ;
Lefevre, Stephane ;
Chapuis, Pierre-Olivier ;
Gomes, Severine .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (44)
[5]   Quantitative thermal measurement by the use of scanning thermal microscope and resistive thermal probes [J].
Bodzenta, Jerzy ;
Kazmierczak-Balata, Anna ;
Harris, Kurt .
JOURNAL OF APPLIED PHYSICS, 2020, 127 (03)
[6]   Quantitative Thermal Microscopy Measurement with Thermal Probe Driven by dc plus ac Current [J].
Bodzenta, Jerzy ;
Juszczyk, Justyna ;
Kazmierczak-Balata, Anna ;
Firek, Piotr ;
Fleming, Austin ;
Chirtoc, Mihai .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2016, 37 (07)
[7]  
Borca-Tasciuc T., 2013, ANN REV HEAT T, V16, P211, DOI DOI 10.1615/ANNUALREVHEATTRANSFER.V16.80
[8]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[9]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[10]   Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology [J].
Dilhaire, S. ;
Pernot, G. ;
Calbris, G. ;
Rampnoux, J. M. ;
Grauby, S. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (11)