Identification of elastic materials using wavelet transform

被引:7
作者
Ohkami, T. [1 ]
Nagao, J. [1 ]
Koyama, S. [1 ]
机构
[1] Shinshu Univ, Dept Architecture & Civil Engn, Nagano 3808553, Japan
关键词
parameter identification; wavelet transform; elastic constants; finite element analysis; back analysis; ill-posed problems;
D O I
10.1016/j.compstruc.2006.08.030
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an identification method for material parameters using the observational boundary conditions and the wavelet analysis. The material parameter identification methods which belong to the deterministic approaches are classified into the inverse and direct approaches. The proposed method combines the inverse approach and the direct approach [Swoboda G, Ichikawa Y, Dong Q, Zaki M. Back analysis of large geotechnical models. Int J Numer Meth Geomech 1999;23:1455-72, Ichikawa Y, Ohkami T. A parameter identification procedure as a dual boundary control problem for linear elastic materials. Soils Foundat 1992;32(2):35-44], and by applying the discrete wavelet transform to the system matrix of the iteration equation, we estimate unknown material parameters for the case in which the number of unknown parameters exceeds the observed data. The validity of this method is examined for geotechnical engineering problems. This paper is a revised and extended version of reference [Ohkami T, Nagao J, Koyarna S. Parameter identification method using wavelet transform. In: Topping B.H.V., editor, Proceedings of the ninth international conference on civil and structural engineering computing. Civil-Comp Press, Stirling (UK); 2003; Paper 116]. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1866 / 1873
页数:8
相关论文
共 17 条
[1]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[2]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[3]   Wavelet solution of the inverse parameter problems [J].
Doi, T ;
Hayano, S ;
Saito, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1962-1965
[4]   Wavelet solution of the inverse source problems [J].
Doi, T ;
Hayano, S ;
Saito, Y .
IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (02) :1935-1938
[5]   Inverse analysis procedure for identifying hardening function in elasto-plastic problem by two-stage finite element scheme [J].
Dziadziuszko, P ;
Ichikawa, Y ;
Sikora, Z .
INVERSE PROBLEMS IN ENGINEERING, 2000, 8 (04) :391-411
[6]   Parallel iterative solvers involving fast wavelet transforms for the solution of BEM systems [J].
González, P ;
Cabaleiro, JC ;
Pena, TF .
ADVANCES IN ENGINEERING SOFTWARE, 2002, 33 (7-10) :417-426
[7]   Biorthogonal wavelet approximation for the coupling of FEM-BEM [J].
Harbrecht, H ;
Paiva, F ;
Pérez, C ;
Schneider, R .
NUMERISCHE MATHEMATIK, 2002, 92 (02) :325-356
[8]  
Ichikawa Y., 1992, Soils Found., V32, P35
[9]  
JACOBY SLS, 1972, ITERATIVE METHODS NO
[10]   A practical determination strategy of optimal threshold parameter for matrix compression in wavelet BEM [J].
Koro, K ;
Abe, K .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (02) :169-191