We use electrostatic interactions to direct the patterning of gold disks having similar to 10-mu m diameters on functionalized surfaces. Planar and curved substrates with patterned surface charge were generated either by microcontact printing or by photolithography. Small charged gold disks were generated by electroplating gold into photoresist molds and derivatizing these disks with charged self-assembled monolayers. When agitated as a suspension in contact with the patterned surfaces, the charged gold disks deposited specifically but as disordered aggregates on regions presenting the opposite charge. Positively-charged disks deposited on phosphonate-, carboxylate-, and SiOH-terminated surfaces but not on trimethylammonium-and dimethylammonium-terminated surfaces, and vice versa for negatively-charged disks. Methyl- and CF3-terminated surfaces resisted deposition of disks of either charge. Selective and dense assembly was achieved in methanol, ethanol, 2-propanol, and dioxane; in water, deposition was nonspecific. The overlap of disks was eliminated by using disks with similar to 1:1 aspect ratios.