Wavelet based non-parametric NARX models for nonlinear input-output system identification

被引:21
作者
Wei, H. L. [1 ]
Billings, S. A. [1 ]
Balikhin, M. A. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
nonlinear system idenification; wavelets; NARX model; non-parametric; additive models;
D O I
10.1080/00207720600903011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Wavelet based non-parametric additive NARX models are proposed for nonlinear input-output system identification. By expanding each functional component of the non-parametric NARX model into wavelet multiresolution expansions. the non-parametric estimation problem becomes a linear-in-the-parameters problem, and least-squares-based methods such as the orthogonal forward regression (OFR) approach, Coupled with model size determination criteria. can be used to select the model terms and estimate the parameters. Wavelet based additive models, combined with model order determination and variable selection approaches, are capable of handling problems of high dimensionality.
引用
收藏
页码:1089 / 1096
页数:8
相关论文
共 28 条
[1]  
[Anonymous], INTRO WAVELETS
[2]  
Billings S., 1996, The determination of multivariable nonlinear models for dynamic systems using neural networks
[3]   A new class of wavelet networks for nonlinear system identification [J].
Billings, SA ;
Wei, HL .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04) :862-874
[4]   IDENTIFICATION OF MIMO NON-LINEAR SYSTEMS USING A FORWARD-REGRESSION ORTHOGONAL ESTIMATOR [J].
BILLINGS, SA ;
CHEN, S ;
KORENBERG, MJ .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 49 (06) :2157-2189
[5]   Discrete wavelet models for identification and qualitative analysis of chaotic systems [J].
Billings, SA ;
Coca, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1263-1284
[6]   ORTHOGONAL LEAST-SQUARES METHODS AND THEIR APPLICATION TO NON-LINEAR SYSTEM-IDENTIFICATION [J].
CHEN, S ;
BILLINGS, SA ;
LUO, W .
INTERNATIONAL JOURNAL OF CONTROL, 1989, 50 (05) :1873-1896
[7]   RECURSIVE HYBRID ALGORITHM FOR NONLINEAR-SYSTEM IDENTIFICATION USING RADIAL BASIS FUNCTION NETWORKS [J].
CHEN, S ;
BILLINGS, SA ;
GRANT, PM .
INTERNATIONAL JOURNAL OF CONTROL, 1992, 55 (05) :1051-1070
[8]   Sparse kernel density construction using orthogonal forward regression with leave-one-out test score and local regularization [J].
Chen, S ;
Hong, X ;
Harris, CJ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1708-1717
[9]   NONLINEAR-SYSTEMS IDENTIFICATION USING RADIAL BASIS FUNCTIONS [J].
CHEN, S ;
BILLINGS, SA ;
COWAN, CFN ;
GRANT, PM .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (12) :2513-2539
[10]   PROJECTION PURSUIT REGRESSION [J].
FRIEDMAN, JH ;
STUETZLE, W .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1981, 76 (376) :817-823