Continuous time random walk model for standard map dynamics

被引:32
作者
Balescu, R
机构
[1] Association Euratom–Etat Belge pour la Fusion, Physique Statistique et Plasmas CP 231, UniversitéLibre de Bruxelles
关键词
AREA-PRESERVING MAPS; MARKOV-TREE MODEL; HAMILTONIAN-SYSTEMS; DIFFUSION; TRANSPORT;
D O I
10.1103/PhysRevE.55.2465
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In standard map dynamics, the time series x(t) are analyzed for chaotic orbits bounded by Kolmogorov-Arnold-Moser barriers, for subcritical values of the stochasticity parameter. They can be described as a succession of rather regular oscillations of bounded amplitude in basins located near island chains, and of jumps between basins, at ''random'' times. This motion can be adequately modeled by a continuous time random walk, using values of the parameters taken from the numerical data. The resulting theory describes a subdiffusive motion, for which the mean square displacement tends towards a saturation value.
引用
收藏
页码:2465 / 2474
页数:10
相关论文
共 28 条
[1]  
[Anonymous], 1955, HDB LAPLACE TRANSFOR
[2]   ANOMALOUS TRANSPORT IN TURBULENT PLASMAS AND CONTINUOUS-TIME RANDOM-WALKS [J].
BALESCU, R .
PHYSICAL REVIEW E, 1995, 51 (05) :4807-4822
[3]   EXIT TIMES AND CHAOTIC TRANSPORT IN HAMILTONIAN-SYSTEMS [J].
BENKADDA, S ;
ELSKENS, Y ;
RAGOT, B ;
MENDONCA, JT .
PHYSICAL REVIEW LETTERS, 1994, 72 (18) :2859-2862
[4]   MAGNETIC ISLAND GROWTH [J].
BOOZER, AH .
PHYSICS OF FLUIDS, 1984, 27 (08) :2055-2062
[5]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[6]   STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS [J].
ESCANDE, DF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4) :165-261
[7]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201
[8]   ALGEBRAIC DECAY IN SELF-SIMILAR MARKOV-CHAINS [J].
HANSON, JD ;
CARY, JR ;
MEISS, JD .
JOURNAL OF STATISTICAL PHYSICS, 1985, 39 (3-4) :327-345
[9]  
HASEGAWA HH, 1991, ASPECTS NONLINEAR DY
[10]   LONG-TIME CORRELATIONS AND EXPANSION-RATE SPECTRA OF CHAOS IN HAMILTONIAN-SYSTEMS [J].
HORITA, T ;
HATA, H ;
ISHIZAKI, R ;
MORI, H .
PROGRESS OF THEORETICAL PHYSICS, 1990, 83 (06) :1065-1070