Exercise activation of muscle peroxisome proliferator-activated receptor-γ coactivator-1α signaling is redox sensitive

被引:166
|
作者
Kang, Chounghun [1 ]
O'Moore, Kathleen M. [1 ]
Dickman, Jonathan R. [1 ]
Ji, Li Li [1 ]
机构
[1] Univ Wisconsin, Biodynam Lab, Dept Kinesiol, Madison, WI 53706 USA
关键词
Allopurinol; Exercise; Mitochondria; PGC-1; alpha; Reactive oxygen species; Skeletal muscle; Free radicals; CONTROLLING MITOCHONDRIAL BIOGENESIS; MESSENGER-RNA EXPRESSION; SKELETAL-MUSCLE; TRANSCRIPTIONAL COACTIVATOR; DOWN-REGULATION; PGC-1-ALPHA; PGC-1; INCREASE; 1-ALPHA;
D O I
10.1016/j.freeradbiomed.2009.08.007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha)-activated signal transduction pathway has previously been shown to stimulate mitochondrial biogenesis in skeletal muscle in response to endurance exercise. In vitro data indicate that PGC-1 alpha signaling may be sensitive to reactive oxygen species (ROS) but its role in vivo is not clear. The objectives of this study were (1) to investigate whether the PGC-1 alpha pathway could be activated by a single bout of anaerobic exercise in rats, wherein a major portion of ROS was generated via the cytosolic xanthine oxidase (XO), and (2) to examine whether allopurinol (ALP), a specific XO inhibitor, would attenuate PGC-1 alpha expression and signaling owing to decreased ROS generation. Female Sprague-Dawley rats were randomly divided into three groups: (1) subjected to sprinting on a treadmill at 35 m/min, 15% grade, for 3 min followed by 3 min slow running at 15 m/min, 0% grade, repeated until exhaustion (88 +/- 4 min; Exer; N= 9); (2) subjected to the same exercise protocol (88 +/- 4 min) but injected with two doses of ALP (0.4 mmol/kg, ip) 24 and 1 h before the experiment (Exer+ ALP; N= 9); and (3) rested control (C; N= 9). Exercise increased XO activity and ROS generation in the Exer rat vastus lateralis muscle (P<0.05), whereas the Exer+ ALP group displayed only 7% XO activity and similar ROS level compared with the C group. PGC-1 alpha protein content showed a 5.6-fold increase (P<0.01) in Exer vs C, along with a 200% (P<0.01) increase in both nuclear respiratory factor (NRF)-1 and mitochondrial transcription factor A (Tfam) content. ALP treatment decreased PGC-1 alpha, NRF-1, and Tfam levels by 45, 19, and 20% (P<0.05), respectively. Exercise doubled the content of the phosphorylated cAMP-responsive element-binding protein in the Exer group (P<0.01) and tripled phosphorylated p38 mitogen-activated protein kinase (P<0.01), whereas these effects were reduced by 60 and 30% (P<0.01, P<0.05), respectively, in Exer+ ALP rats. Nuclear factor-kappa B binding and phospho-I kappa B content were also increased in Exer rats (P<0.01) and these increases were abolished by ALP treatment. The data indicate that contraction-activated PGC-1 alpha signaling pathways in skeletal muscle are redox sensitive and that nonmitochondrial ROS play an important role in stimulating mitochondrial biogenesis. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1394 / 1400
页数:7
相关论文
共 50 条
  • [1] Peroxisome proliferator-activated receptor-γ coactivator-1α in muscle links metabolism to inflammation
    Handschin, Christoph
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2009, 36 (12) : 1139 - 1143
  • [2] Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α in the Spotlight with Multiple Sclerosis
    Ya-Na Yang
    Mao-Qing Zhang
    Feng-Lin Yu
    Ming-Yue Bing Han
    Xing Bao
    Yuan Yan He
    Neuroscience Bulletin, 2024, 40 : 268 - 272
  • [3] Peroxisome Proliferator-Activated Receptor-γ Coactivator-1α in the Spotlight with Multiple Sclerosis
    Yang, Ya-Na
    Zhang, Mao-Qing
    Yu, Feng-Lin
    Bao, Ming-Yue
    Li, Xing
    Zhang, Yuan
    NEUROSCIENCE BULLETIN, 2024, 40 (02) : 268 - 272
  • [4] Transcriptional Regulation of the Peroxisome Proliferator-Activated Receptor γ Coactivator-1α
    Ramjiawan, Angela
    Czubryt, Michael P.
    CIRCULATION, 2009, 120 (18) : S894 - S895
  • [5] Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle
    Russell, AP
    Feilchenfeldt, J
    Schreiber, S
    Praz, M
    Crettenand, A
    Gobelet, C
    Meier, CA
    Bell, DR
    Kralli, A
    Giacobino, JP
    Dériaz, O
    DIABETES, 2003, 52 (12) : 2874 - 2881
  • [6] Application of recombinant peroxisome proliferator-activated receptor-γ coactivator-1α mediates neovascularization in the retina
    Jiang, Jian
    Zhang, Lixin
    Zhang, Lu
    Xia, Xiaobo
    MOLECULAR MEDICINE REPORTS, 2016, 13 (02) : 1311 - 1319
  • [7] An increase in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to exercise is mediated by β-adrenergic receptor activation
    Miura, Shinji
    Kawanaka, Kentaro
    Kai, Yuko
    Tamura, Mayumi
    Goto, Masahide
    Shiuchi, Tetsuya
    Minokoshi, Yasuhiko
    Ezaki, Osamu
    ENDOCRINOLOGY, 2007, 148 (07) : 3441 - 3448
  • [8] Peroxisome proliferator-activated receptor-γ coactivator-1 and insulin resistance: acute effect of fatty acids
    J. Hoeks
    M. K. C. Hesselink
    A. P. Russell
    M. Mensink
    W. H. M. Saris
    R. P. Mensink
    P. Schrauwen
    Diabetologia, 2006, 49 : 2419 - 2426
  • [9] Peroxisome proliferator-activated receptor-γ coactivator-1 and insulin resistance:: acute effect of fatty acids
    Hoeks, J.
    Hesselink, M. K. C.
    Russell, A. P.
    Mensink, M.
    Saris, W. H. M.
    Mensink, R. P.
    Schrauwen, P.
    DIABETOLOGIA, 2006, 49 (10) : 2419 - 2426
  • [10] Peroxisome proliferator-activated receptor γ coactivator-1α in heart disease (Review)
    Sun, Siyu
    Guo, Huige
    Chen, Guohui
    Zhang, Hui
    Zhang, Zhanrui
    Wang, Xiulong
    Li, Dongxu
    Li, Xuefang
    Zhao, Guoan
    Lin, Fei
    MOLECULAR MEDICINE REPORTS, 2025, 31 (01)