Nonsymmetric Lorenz attractors from homoclinic bifurcation

被引:19
作者
Robinson, C [1 ]
机构
[1] Northwestern Univ, Dept Math, Evanston, IL 60208 USA
关键词
attractors; Lorenz; homoclinic bifurcation;
D O I
10.1137/S0036141098343598
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a bifurcation of a ow in three dimensions from a double homoclinic connection to a fixed point satisfying a resonance condition between the eigenvalues. For correctly chosen parameters in the unfolding, we prove that there is a transitive attractor of Lorenz type. In particular we show the existence of a bifurcation to an attractor of Lorenz type which is semiorientable, i.e., orientable on one half and nonorientable on the other half. We do not assume any symmetry condition, so we need to discuss nonsymmetric one-dimensional Poincare maps with one discontinuity and absolute value of the derivative always greater than one. We also apply these results to a specific set of degree four polynomial differential equations. The results do not apply to the actual Lorenz equations because they do not have enough parameters to adjust to make them satisfy the hypothesis.
引用
收藏
页码:119 / 141
页数:23
相关论文
共 18 条
[1]  
[Anonymous], 1997, LECT NOTES MATH
[2]   ON ITERATIONS OF 1 - AX-2 ON ( - 1, 1) [J].
BENEDICKS, M ;
CARLESON, L .
ANNALS OF MATHEMATICS, 1985, 122 (01) :1-25
[3]  
BYERS M, 1995, THESIS NW U EVANSTON
[4]  
CHOI Y, 1998, THESIS NW U EVANSTON
[5]   A DEGENERATE SINGULARITY GENERATING GEOMETRIC LORENZ ATTRACTORS [J].
DUMORTIER, F ;
KOKUBU, H ;
OKA, H .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :833-856
[6]  
Hirsch M. W., 1977, LECT NOTES MATH, V583
[7]   GENERALIZED BOUNDED VARIATION AND APPLICATIONS TO PIECEWISE MONOTONIC TRANSFORMATIONS [J].
KELLER, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (03) :461-478
[8]   ERGODIC TRANSFORMATIONS FROM AN INTERVAL INTO ITSELF [J].
LI, TY ;
YORKE, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 235 (JAN) :183-192
[9]   Singular strange attractors on the boundary of Morse-Smale systems [J].
Morales, CA ;
Pujals, ER .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1997, 30 (06) :693-717
[10]  
OKA H, 1994, HARNESSING CHAOS, P389