共 50 条
Polymodal Mechanism for TWIK-Related K+ Channel Inhibition by Local Anesthetic
被引:9
|作者:
Pavel, Mahmud Arif
[1
,2
]
Chung, Hae-Won
[1
,2
]
Petersen, E. Nicholas
[1
,2
]
Hansen, Scott B.
[1
,2
]
机构:
[1] Scripps Res Inst, Dept Mol Med, 130 Scripps Way,C236, Jupiter, FL 33458 USA
[2] Scripps Res Inst, Dept Neurosci, Jupiter, FL 33458 USA
基金:
美国国家卫生研究院;
关键词:
POTASSIUM CHANNELS;
LIPID-BILAYER;
TREK-1;
PAIN;
PIP2;
BLOCK;
TRAAK;
D O I:
10.1213/ANE.0000000000004216
中图分类号:
R614 [麻醉学];
学科分类号:
100217 ;
摘要:
BACKGROUND: Local anesthetics cause reversible block of pain and robustly inhibit TWIK-related K+ channel (TREK-1) currents. Before local anesthesia onset, injection of local anesthetics can cause unwanted transient pain. TREK-1 is an anesthetic-sensitive potassium channel that when inhibited produces pain. A disordered C-terminal loop of TREK-1 is thought to contribute to anesthetic sensitivity, but the molecular basis for TREK-1 inhibition by local anesthetics is unknown. Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA) required for TREK-1 activation and also binds to the channel's C terminus. METHODS: Here, we use biophysical and cellular techniques to characterize direct and indirect lipid-mediated mechanism for TREK-1 inhibition (respectively). We characterized direct binding of local anesthetic to TREK-1 by reconstituting the purified channel into artificial membranes and measuring ion flux. We characterized indirect PA-mediated inhibition of TREK-1 by monitoring lipid production in live whole cells using a fluorescent PLD2 product release assay and ion channel current using live whole-cell patch-clamp electrophysiology. We monitored anesthetic-induced nanoscale translocation of PLD2 to TREK-1 channels with super-resolution direct stochastic reconstruction microscopy (dSTORM). RESULTS: We find local anesthetics tetracaine, lidocaine, and bupivacaine directly bind to and inhibit PLD2 enzymatic activity. The lack of PLD2 activity indirectly inhibited TREK-1 currents. Select local anesthetics also partially blocked the open pore of TREK-1 through direct binding. The amount of pore block was variable with tetracaine greater than bupivacaine and lidocaine exhibiting a minor effect. Local anesthetics also disrupt lipid rafts, a mechanism that would normally activate PLD2 were it not for their direct inhibition of enzyme catalysis. CONCLUSIONS: We propose a mechanism of TREK-1 inhibition comprised of (1) primarily indirect PLD2-dependent inhibition of lipid catalysis and (2) limited direct inhibition for select local anesthetics through partial open pore block. The inhibition through PLD2 explains how the C terminus can regulate the channel despite being devoid of structure and putative binding sites for local anesthetics.
引用
收藏
页码:973 / 982
页数:10
相关论文