Nilpotent (3,6) sub-Riemannian problem

被引:30
|
作者
Myasnichenko, O
机构
[1] Moscow Inst Aviat Technol, Dept Math, Moscow 125080, Russia
[2] SISSA, ISAS, I-34014 Trieste, Italy
关键词
sub-Riemannian geometry; nonholonomic constraints; Pontryagin maximum principle; Lagrangian map; SO(n)-action; caustic;
D O I
10.1023/A:1020719503741
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the nilpotent (3, 6) sub-Riemannian problem. We describe the envelope of sub-Riemannian geodesics starting from a fixed point. We also describe the wave fronts propagating from the point. For general nilpotent (n, n(n + 1)/2) sub-Riemannian problem we formulate a conjecture about the form of the variety where geodesics starting from a fixed point lose optimality.
引用
收藏
页码:573 / 597
页数:25
相关论文
共 50 条
  • [41] Correction to: Conjugate Time in the Sub-Riemannian Problem on the Cartan Group
    Yu. L. Sachkov
    Journal of Dynamical and Control Systems, 2021, 27 : 753 - 753
  • [42] MAXWELL STRATA IN SUB-RIEMANNIAN PROBLEM ON THE GROUP OF MOTIONS OF A PLANE
    Moiseev, Igor
    Sachkov, Yuri L.
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2010, 16 (02) : 380 - 399
  • [43] Holonomy of sub-Riemannian manifolds
    Falbel, E
    Gorodski, C
    Rumin, M
    INTERNATIONAL JOURNAL OF MATHEMATICS, 1997, 8 (03) : 317 - 344
  • [44] Homogenization for sub-riemannian Lagrangians
    Morgado, Hector Sanchez
    NONLINEARITY, 2023, 36 (06) : 3043 - 3067
  • [45] The structure of abnormal extremals in a sub-Riemannian problem with growth vector
    Sachkov, Yu. L.
    Sachkova, E. F.
    SBORNIK MATHEMATICS, 2020, 211 (10) : 1460 - 1485
  • [46] Quantum Computational Riemannian and Sub-Riemannian Geodesics
    Shizume, Kosuke
    Nakajima, Takao
    Nakayama, Ryo
    Takahashi, Yutaka
    PROGRESS OF THEORETICAL PHYSICS, 2012, 127 (06): : 997 - 1008
  • [47] On Sub-Riemannian and Riemannian Structures on the Heisenberg Groups
    Biggs, Rory
    Nagy, Peter T.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (03) : 563 - 594
  • [48] Sub-Riemannian Cartan Sphere
    Sachkov, Yu. L.
    DOKLADY MATHEMATICS, 2022, 106 (03) : 462 - 466
  • [49] Symmetries of sub-Riemannian surfaces
    Arteaga B, Jose Ricardo
    Malakhaltsev, Mikhail Armenovich
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (01) : 290 - 308
  • [50] Subanalyticity of the sub-Riemannian distance
    Jacquet S.
    Journal of Dynamical and Control Systems, 1999, 5 (3) : 303 - 328