Nilpotent (3,6) sub-Riemannian problem

被引:30
|
作者
Myasnichenko, O
机构
[1] Moscow Inst Aviat Technol, Dept Math, Moscow 125080, Russia
[2] SISSA, ISAS, I-34014 Trieste, Italy
关键词
sub-Riemannian geometry; nonholonomic constraints; Pontryagin maximum principle; Lagrangian map; SO(n)-action; caustic;
D O I
10.1023/A:1020719503741
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the nilpotent (3, 6) sub-Riemannian problem. We describe the envelope of sub-Riemannian geodesics starting from a fixed point. We also describe the wave fronts propagating from the point. For general nilpotent (n, n(n + 1)/2) sub-Riemannian problem we formulate a conjecture about the form of the variety where geodesics starting from a fixed point lose optimality.
引用
收藏
页码:573 / 597
页数:25
相关论文
共 50 条
  • [21] Dynamical systems and step-2 nilpotent sub-Riemannian geometry
    UAM-Azcapotzalco, Departamento de Ciencias Básicas, Av.San Pablo 180, 02200 México D.F., Mexico
    WSEAS Trans. Syst., 2006, 3 (637-642):
  • [22] An approach to the relativistic brachistochrone problem by sub-Riemannian geometry
    Giannoni, F
    Piccione, P
    Verderesi, JA
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) : 6367 - 6381
  • [23] Cut time in the sub-Riemannian problem on the Cartan group*
    Ardentov, Andrei
    Hakavuori, Eero
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28
  • [24] An Introduction to the Heisenberg Group and the sub-Riemannian Isoperimetric Problem
    Beltita, Daniel
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 54 (01): : 74 - 75
  • [25] An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem
    Varga, Csaba
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2008, 53 (04): : 126 - 127
  • [26] Cut Locus in the Sub-Riemannian Problem on Engel Group
    Ardentov, A. A.
    Sachkov, Yu. L.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 82 - 85
  • [27] Variational aspects of the geodesics problem in sub-Riemannian geometry
    Piccione, P
    Tausk, DV
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 39 (03) : 183 - 206
  • [28] Inverse Optimal Control Problem: the Sub-Riemannian Case
    Jean, Frederic
    Maslovskaya, Sofya
    Zelenko, Igor
    IFAC PAPERSONLINE, 2017, 50 (01): : 500 - 505
  • [29] Cut Locus in the Sub-Riemannian Problem on Engel Group
    A. A. Ardentov
    Yu. L. Sachkov
    Doklady Mathematics, 2018, 97 : 82 - 85
  • [30] Sub-Riemannian geometry
    Kupka, I
    ASTERISQUE, 1997, (241) : 351 - 380