Nilpotent (3,6) sub-Riemannian problem

被引:30
|
作者
Myasnichenko, O
机构
[1] Moscow Inst Aviat Technol, Dept Math, Moscow 125080, Russia
[2] SISSA, ISAS, I-34014 Trieste, Italy
关键词
sub-Riemannian geometry; nonholonomic constraints; Pontryagin maximum principle; Lagrangian map; SO(n)-action; caustic;
D O I
10.1023/A:1020719503741
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we study the nilpotent (3, 6) sub-Riemannian problem. We describe the envelope of sub-Riemannian geodesics starting from a fixed point. We also describe the wave fronts propagating from the point. For general nilpotent (n, n(n + 1)/2) sub-Riemannian problem we formulate a conjecture about the form of the variety where geodesics starting from a fixed point lose optimality.
引用
收藏
页码:573 / 597
页数:25
相关论文
共 50 条
  • [1] Nilpotent (3, 6) Sub-Riemannian Problem
    O. Myasnichenko
    Journal of Dynamical and Control Systems, 2002, 8 : 573 - 597
  • [2] The nilpotent tangent 3-dimensional sub-Riemannian problem is nonintegrable
    Maciejewski, AJ
    Respondek, W
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 438 - 443
  • [3] Conjugate points in nilpotent sub-riemannian problem on the Engel group
    Ardentov A.A.
    Sachkov Y.L.
    Journal of Mathematical Sciences, 2013, 195 (3) : 369 - 390
  • [4] Extremal trajectories in a nilpotent sub-Riemannian problem on the Engel group
    Ardentov, A. A.
    Sachkov, Yu. L.
    SBORNIK MATHEMATICS, 2011, 202 (11) : 1593 - 1615
  • [5] NILPOTENT (n, n(n + 1)/2) SUB-RIEMANNIAN PROBLEM
    Oleg Myasnichenko
    Journal of Dynamical and Control Systems, 2006, 12 : 87 - 95
  • [6] ULTRARIGID TANGENTS OF SUB-RIEMANNIAN NILPOTENT GROUPS
    Le Donne, Enrico
    Ottazzi, Alessandro
    Ben Warhurst
    ANNALES DE L INSTITUT FOURIER, 2014, 64 (06) : 2265 - 2282
  • [7] Dynamical systems and nilpotent sub-Riemannian geometry
    Anzaldo-Meneses, A.
    Monroy-Perez, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [8] Nilpotent (n, n(n+1)/2) sub-Riemannian problem
    Myasnichenko, O
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2006, 12 (01) : 87 - 95
  • [9] A problem of sub-Riemannian geometry
    Petrov, NN
    DIFFERENTIAL EQUATIONS, 1995, 31 (06) : 911 - 916
  • [10] Fat sub-Riemannian symmetric spaces: the nilpotent case
    Almeida, D. M.
    Falbel, E.
    ARKIV FOR MATEMATIK, 2018, 56 (02): : 207 - 228