FINE: Fisher Information Nonparametric Embedding

被引:55
作者
Carter, Kevin M. [1 ]
Raich, Raviv [2 ]
Finn, William G. [3 ]
Hero, Alfred O., III [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Oregon State Univ, Sch Elect Engn & Comp Sci, Corvallis, OR 97331 USA
[3] Univ Michigan, Dept Pathol, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Information geometry; statistical manifold; dimensionality reduction; multidimensional scaling; REDUCTION;
D O I
10.1109/TPAMI.2009.67
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider the problems of clustering, classification, and visualization of high-dimensional data when no straightforward euclidean representation exists. In this paper, we propose using the properties of information geometry and statistical manifolds in order to define similarities between data sets using the Fisher information distance. We will show that this metric can be approximated using entirely nonparametric methods, as the parameterization and geometry of the manifold is generally unknown. Furthermore, by using multidimensional scaling methods, we are able to reconstruct the statistical manifold in a low-dimensional euclidean space; enabling effective learning on the data. As a whole, we refer to our framework as Fisher Information Nonparametric Embedding (FINE) and illustrate its uses on practical problems, including a biomedical application and document classification.
引用
收藏
页码:2093 / U195
页数:6
相关论文
共 20 条
[1]  
Amari S.-i., 2000, Methods of Information Geometry, V191, DOI DOI 10.1090/MMONO/191
[2]  
[Anonymous], ADV NEURAL INFORM PR
[3]  
[Anonymous], 1994, Multidimensional Scaling
[4]  
Arandjelovic O, 2005, PROC CVPR IEEE, P581
[5]  
Carter K.M., 2009, THESIS U MICHIGAN
[6]   Information Preserving Component Analysis: Data Projections for Flow Cytometry Analysis [J].
Carter, Kevin M. ;
Raich, Raviv ;
Finn, William G. ;
Hero, Alfred O., III .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2009, 3 (01) :148-158
[7]  
CARTER KM, 2008, P IEEE INT C AC SPEE, P1861
[8]   Analysis of Clinical Flow Cytometric Immunophenotyping Data by Clustering on Statistical Manifolds: Treating Flow Cytometry Data as High-Dimensional Objects [J].
Finn, William G. ;
Carter, Kevin M. ;
Raich, Raviv ;
Stoolman, Lloyd M. ;
Hero, Alfred O. .
CYTOMETRY PART B-CLINICAL CYTOMETRY, 2009, 76B (01) :1-7
[9]  
Huang SP, 2005, THIRD INTERNATIONAL CONFERENCE ON COORDINATED & MULTIPLE VIEWS IN EXPLORATORY VISUALIZATION, PROCEEDINGS, P63
[10]  
Kass RE., 1997, Geometrical Foundations of Asymptotic Inference