Ubiquitin-binding domains - from structures to functions

被引:672
作者
Dikic, Ivan [1 ,2 ,3 ]
Wakatsuki, Soichi [4 ]
Walters, Kylie J. [5 ]
机构
[1] Goethe Univ Frankfurt, Inst Biochem & Cluster Excellence Macromol Comple, D-60590 Frankfurt, Germany
[2] Mediterranean Inst Life Sci, Tumour Biol Program, Split 21000, Croatia
[3] Univ Split, Sch Med, Dept Immunol, Split 21000, Croatia
[4] High Energy Accelerator Res Org, Inst Mat Struct Sci, Photon Factory, Struct Biol Res Ctr, Tsukuba, Ibaraki 3050801, Japan
[5] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
KAPPA-B ACTIVATION; 63-LINKED POLYUBIQUITIN CHAINS; DNA-DAMAGE; UBA DOMAIN; PROTEASOME SUBUNIT; DEUBIQUITINATING ENZYME; EAP45-GLUE DOMAIN; INTERACTING MOTIF; CRYSTAL-STRUCTURE; ESCRT MACHINERY;
D O I
10.1038/nrm2767
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Ubiquitin-binding domains (UBDs) are modular elements that bind non-covalently to the protein modifier ubiquitin. Recent atomic-level resolution structures of ubiquitin-UBD complexes have revealed some of the mechanisms that underlie the versatile functions of ubiquitin in vivo. The preferences of UBDs for ubiquitin chains of specific length and linkage are central to these functions. These preferences originate from multimeric interactions, whereby UBDs synergistically bind multiple ubiquitin molecules, and from contacts with regions that link ubiquitin molecules into a polymer. The sequence context of UBDs and the conformational changes that follow their binding to ubiquitin also contribute to ubiquitin signalling. These new structure-based insights provide strategies for controlling cellular processes by targeting ubiquitin-UBD interfaces.
引用
收藏
页码:659 / 671
页数:13
相关论文
共 123 条
[1]   Structural basis for recognition of ubiquitinated cargo by Tom1-GAT domain [J].
Akutsu, M ;
Kawasaki, M ;
Katoh, Y ;
Shiba, T ;
Yamaguchi, Y ;
Kato, R ;
Kato, K ;
Nakayama, K ;
Wakatsuki, S .
FEBS LETTERS, 2005, 579 (24) :5385-5391
[2]   Ubiquitin interactions of NZF zinc fingers [J].
Alam, SL ;
Sun, J ;
Payne, M ;
Welch, BD ;
Blake, BK ;
Davis, DR ;
Meyer, HH ;
Emr, SD ;
Sundquist, WI .
EMBO JOURNAL, 2004, 23 (07) :1411-1421
[3]   Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain [J].
Alam, Steven L. ;
Langelier, Charles ;
Whitby, Frank G. ;
Koirala, Sajjan ;
Robinson, Howard ;
Hill, Christopher P. ;
Sundquist, Wesley I. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2006, 13 (11) :1029-1030
[4]  
Amerik AY, 1997, EMBO J, V16, P4826
[5]   Physical and functional interactions of monoubiquitylated transactivators with the proteasome [J].
Archer, Chase T. ;
Burdine, Lyle ;
Liu, Bo ;
Ferdous, Anwarul ;
Johnston, Stephen Albert ;
Kodadek, Thomas .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (31) :21789-21798
[6]   A role for ubiquitin in the spliceosome assembly pathway [J].
Bellare, Priya ;
Small, Eliza C. ;
Huang, Xinhua ;
Wohlschlegel, James A. ;
Staley, Jonathan P. ;
Sontheimer, Erik J. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (05) :444-451
[7]   DNA damage: ubiquitin marks the spot [J].
Bennett, Eric J. ;
Harper, J. Wade .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2008, 15 (01) :20-22
[8]   UBA domains of DNA damage-inducible proteins interact with ubiquitin [J].
Bertolaet, BL ;
Clarke, DJ ;
Wolff, M ;
Watson, MH ;
Henze, M ;
Divita, G ;
Reed, SI .
NATURE STRUCTURAL BIOLOGY, 2001, 8 (05) :417-422
[9]   Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis [J].
Bienko, M ;
Green, CM ;
Crosetto, N ;
Rudolf, F ;
Zapart, G ;
Coull, B ;
Kannouche, P ;
Wider, G ;
Peter, M ;
Lehmann, AR ;
Hofmann, K ;
Dikic, I .
SCIENCE, 2005, 310 (5755) :1821-1824
[10]   The GAT domains of clathrin-associated GGA proteins have two ubiquitin binding motifs [J].
Bilodeau, PS ;
Winistorfer, SC ;
Allaman, MM ;
Surendhran, K ;
Kearney, WR ;
Robertson, AD ;
Piper, RC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (52) :54808-54816