On Modification of Certain Exponential Type Operators Preserving Constant and e-x

被引:0
作者
Lipi, KM. [1 ]
Deo, Naokant [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, Bawana Rd, Delhi 110042, India
关键词
Exponential operators; Ismail May operators; Voronovoskaya theorem; Degree of approximation; MIRAKYAN-TYPE OPERATORS; APPROXIMATION PROPERTIES;
D O I
10.1007/s40840-021-01100-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The key goal of this article is to propose a modification of certain exponential type operators defined by Ismail and May. Particularly, we concentrate on a sequence of operators that preserve e(-x) and constant functions. We find the moments of these modified operators using the concept of moment generating function with the help of Mathematica software. We show uniform convergence of these modified operators and analyze the asymptotic behaviour with a Voronovskaya type theorem. We also illustrate via graphs that our modified operators approximate better than the original operators for certain family of functions. Finally, we show the convergence of these modified operators graphically using Mathematica Software.
引用
收藏
页码:3269 / 3284
页数:16
相关论文
共 22 条
[1]   Szasz-Mirakyan Type Operators Which Fix Exponentials [J].
Acar, Tuncer ;
Aral, Ali ;
Cardenas-Morales, Daniel ;
Garrancho, Pedro .
RESULTS IN MATHEMATICS, 2017, 72 (03) :1393-1404
[2]  
Acar T, 2017, MEDITERR J MATH, V14, DOI 10.1007/s00009-016-0804-7
[3]   Approximation properties of Szasz-Mirakyan operators preserving exponential functions [J].
Aral, Ali ;
Inoan, Daniela ;
Rasa, Ioan .
POSITIVITY, 2019, 23 (01) :233-246
[4]   BERNSTEIN-TYPE OPERATORS THAT REPRODUCE EXPONENTIAL FUNCTIONS [J].
Aral, Ali ;
Cardenas-Morales, Daniel ;
Garrancho, Pedro .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03) :861-872
[5]  
Boyanov B D., 1970, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.), V14, P9
[6]   STATISTICAL CONVERGENCE FOR GENERAL BETA OPERATORS [J].
Deo, Naokant ;
Ozarslan, Mehmet Ali ;
Bhardwaj, Neha .
KOREAN JOURNAL OF MATHEMATICS, 2014, 22 (04) :671-681
[7]   Some approximation results for Durrmeyer operators [J].
Deo, Naokant ;
Bhardwaj, Neha .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :5531-5536
[8]  
Gupta, 2020, ICRAPAM SPRINGER P M, V306
[10]   Phillips Operators Preserving Arbitrary Exponential Functions, eat, ebt [J].
Gupta, Vijay ;
Lopez-Moreno, Antonio-Jesus .
FILOMAT, 2018, 32 (14) :5071-5082