Automated Nanoflow Two-Dimensional Reversed-Phase Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of Nanoscale Samples

被引:34
作者
Dou, Maowei [1 ]
Tsai, Chia-Feng [2 ]
Piehowski, Paul D. [2 ]
Wang, Yang [2 ]
Fillmore, Thomas L. [1 ]
Zhao, Rui [1 ]
Moore, Ronald J. [2 ]
Zhang, Pengfei [2 ]
Qian, Wei-Jun [2 ]
Smith, Richard D. [2 ]
Liu, Tao [2 ]
Kelly, Ryan T. [1 ,3 ]
Shi, Tujin [2 ]
Zhu, Ying [1 ]
机构
[1] Pacific Northwest Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
[2] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99354 USA
[3] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84604 USA
关键词
MASS SPECTROMETRY; HIGH-SENSITIVITY; STRATEGY; MS; FRACTIONATION; CAPABILITIES; EXTRACTION; DISCOVERY; PROTEINS; COVERAGE;
D O I
10.1021/acs.analchem.9b01248
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Two-dimensional reversed-phase capillary liquid chromatography (2D RPLC) separations have enabled comprehensive proteome profiling of biological systems. However, milligram sample quantities of proteins are typically required due to significant losses during offline fractionation. Such a large sample requirement generally precludes the application samples in the nanogram to low-microgram range. To achieve in-depth proteomic analysis of such small-sized samples, we have developed the nanoFAC (nanoflow Fractionation and Automated Concatenation) 2D RPLC platform, in which the first dimension high-pH fractionation was performed on a 75-mu m i.d. capillary column at a 300 nL/min flow rate with automated fraction concatenation, instead of on a typically used 2.1 mm column at a 200 mu L/min flow rate with manual concatenation. Each fraction was then fully transferred to the second-dimension low-pH nanoLC separation using an autosampler equipped with a custom-machined syringe. We have found that using a polypropylene 96-well plate as collection device as well as the addition of n-Dodecyl beta-D-maltoside (0.01%) in the collection buffer can significantly improve sample recovery. We have demonstrated the nanoFAC 2D RPLC platform can achieve confident identifications of similar to 49,000-94,000 unique peptides, corresponding to similar to 6,700-8,300 protein groups using only 100-1000 ng of HeLa tryptic digest (equivalent to similar to 500-5,000 cells). Furthermore, by integrating with phosphopeptide enrichment, the nanoFAC 2D RPLC platform can identify similar to 20,000 phosphopeptides from 100 mu g of MCF-7 cell lysate.
引用
收藏
页码:9707 / 9715
页数:9
相关论文
共 44 条
[21]   IDPicker 2.0: Improved Protein Assembly with High Discrimination Peptide Identification Filtering [J].
Ma, Ze-Qiang ;
Dasari, Surendra ;
Chambers, Matthew C. ;
Litton, Michael D. ;
Sobecki, Scott M. ;
Zimmerman, Lisa J. ;
Halvey, Patrick J. ;
Schilling, Birgit ;
Drake, Penelope M. ;
Gibson, Bradford W. ;
Tabb, David L. .
JOURNAL OF PROTEOME RESEARCH, 2009, 8 (08) :3872-3881
[22]   Online Parallel Accumulation Serial Fragmentation (PASEF) with a Novel Trapped on Mobility Mass Spectrometer [J].
Meier, Florian ;
Brunner, Andreas-David ;
Koch, Scarlet ;
Koch, Heiner ;
Lubeck, Markus ;
Krause, Michael ;
Goedecke, Niels ;
Decker, Jens ;
Kosinski, Thomas ;
Park, Melvin A. ;
Bache, Nicolai ;
Hoerning, Ole ;
Cox, Jurgen ;
Raether, Oliver ;
Mann, Matthias .
MOLECULAR & CELLULAR PROTEOMICS, 2018, 17 (12) :2534-2545
[23]   A Systematic Strategy for Proteomic Analysis of Chloroplast Protein Complexes in Wheat [J].
Meng, Qingshi ;
Rao, Liqun ;
Xiang, Xiaocong ;
Zhou, Chunxi ;
Zhang, Xinyi ;
Pan, Yinghong .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2011, 75 (11) :2194-2199
[24]   Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry [J].
Mertins, Philipp ;
Tang, Lauren C. ;
Krug, Karsten ;
Clark, David J. ;
Gritsenko, Marina A. ;
Chen, Lijun ;
Clauser, Karl R. ;
Clauss, Therese R. ;
Shah, Punit ;
Gillette, Michael A. ;
Petyuk, Vladislav A. ;
Thomas, Stefani N. ;
Mani, D. R. ;
Mundt, Filip ;
Moore, Ronald J. ;
Hui, Yingwei ;
Zhao, Rui ;
Schnaubelt, Michael ;
Keshishian, Hasmik ;
Monroe, Matthew E. ;
Zhang, Zhen ;
Udeshi, Namrata D. ;
Mani, Deepak ;
Davies, Sherri R. ;
Townsend, R. Reid ;
Chan, Daniel W. ;
Smith, Richard D. ;
Zhang, Hui ;
Liu, Tao ;
Carr, Steven A. .
NATURE PROTOCOLS, 2018, 13 (07) :1632-1661
[25]  
Piehowski P. D, UNPUB
[26]   Defeating Major Contaminants in Fe3+- Immobilized Metal Ion Affinity Chromatography (IMAC) Phosphopeptide Enrichment [J].
Potel, Clement M. ;
Lin, Miao-Hsia ;
Heck, Albert J. R. ;
Lemeer, Simone .
MOLECULAR & CELLULAR PROTEOMICS, 2018, 17 (05) :1028-1034
[27]  
Righetti PG, 2013, LOW-ABUNDANCE PROTEOME DISCOVERY: STATE OF THE ART AND PROTOCOLS, P1
[28]  
Ruprecht B, 2017, METHODS MOL BIOL, V1550, P47, DOI 10.1007/978-1-4939-6747-6_5
[29]   High-efficiency on-line solid-phase extraction coupling to 15-150-μm-id column liquid chromatography for proteomic analysis [J].
Shen, YF ;
Moore, RJ ;
Zhao, R ;
Blonder, J ;
Auberry, DL ;
Masselon, C ;
Pasa-Tolic, L ;
Hixson, KK ;
Auberry, KJ ;
Smith, RD .
ANALYTICAL CHEMISTRY, 2003, 75 (14) :3596-3605
[30]   Automated 20 kpsi RPLC-MS and MS/MS with chromatographic peak capacities of 1000-1500 and capabilities in proteomics and metabolomics [J].
Shen, YF ;
Zhang, R ;
Moore, RJ ;
Kim, J ;
Metz, TO ;
Hixson, KK ;
Zhao, R ;
Livesay, EA ;
Udseth, HR ;
Smith, RD .
ANALYTICAL CHEMISTRY, 2005, 77 (10) :3090-3100