Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties

被引:122
作者
Wang, Yixi [1 ,2 ,3 ,4 ]
Wang, Zhicun [1 ,2 ,3 ,4 ]
Wu, Keliang [1 ,2 ,3 ,4 ]
Wu, Jianning [1 ,2 ,3 ,4 ]
Meng, Guihua [1 ,2 ,3 ,4 ]
Liu, Zhiyong [1 ,2 ,3 ,4 ]
Guo, Xuhong [1 ,2 ,3 ,4 ,5 ]
机构
[1] Shihezi Univ, Sch Chem & Chem Engn, Shihezi 832003, Xinjiang, Peoples R China
[2] Key Lab Green Proc Chem Engn Xinjiang Bingtuan, Shihezi 832003, Xinjiang, Peoples R China
[3] Key Lab Mat Oriented Chem Engn Xinjiang Uygur Aut, Shihezi 832003, Xinjiang, Peoples R China
[4] Engn Res Ctr Mat Oriented Chem Engn Xinjiang Bing, Shihezi 832003, Xinjiang, Peoples R China
[5] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogel; Double network; High strength; Self-healing; Antibacterial; POLY(ACRYLIC ACID) HYDROGELS; SHAPE-MEMORY PROPERTIES; SUPRAMOLECULAR HYDROGELS; CROSS-LINKING; IN-SITU; COMPOSITES; BEHAVIOR; WATER;
D O I
10.1016/j.carbpol.2017.03.070
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Novel antibacterial double-network (DN) hydrogels with superior mechanical and self-healing properties are developed via the UV-initiated copolymerization of polyacrylic acid (PAA)-grafted quaternized cellulose (QCE) and polyvinyl alcohol (PVA). The QCE functioned as an antibacterial agent, resulting in excellent antibacterial capability (antibacterial rate >93%). The hydrogels are thus protected from microbial attack in natural environments, prolonging their lifetime. The PVA functioned as a physical cross-linker, resulting in superior mechanical properties. At PVA and QCE contents of 8% and 1.5%, respectively, the strain and stress at break of hydrogel were 465.37% and 1.13 MPa, respectively. The hydrogel maintained good self-healing properties owing to ionic bonding between the ferric ions and carboxylic groups, and hydrogen bonding between the PVA molecules. The hydrogel was responsive to pH; its water-holding ability could be controlled by changing the pH. The material is simply prepared and used. Hydrogels with such excellent properties could be applied in various biomedical fields. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 50 条
  • [41] Highly Sensitive and Stable Flexible Sensors Based on Antifreezing and Self-Healing Double-Network Composite Hydrogels for Human Motion Monitoring
    Li, Pan
    Zhou, Tianjun
    Bai, Liangjiu
    Chen, Hou
    Wang, Wenxiang
    Yang, Huawei
    Yang, Lixia
    Wei, Donglei
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (09) : 7621 - 7630
  • [42] Low-temperature strain-sensitive sensor based on cellulose-based ionic conductive hydrogels with moldable and self-healing properties
    Chen, Minzhi
    Quan, Qi
    You, Zhenping
    Dong, Yue
    Zhou, Xiaoyan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [43] Dynamic Schiff base linkage-based double-network hydrogels with injectable, self-healing, and pH-responsive properties for bacteria-infected wound healing
    Du, Wenfang
    Li, Hong
    Luo, Jie
    Wang, Yuxiao
    Xi, Qiang
    Liu, Jie
    Yang, Shengyuan
    Li, Junjie
    Xiao, Fubing
    CELLULOSE, 2024, 31 (10) : 6373 - 6385
  • [44] High-strength, fatigue-resistant, and fast self-healing antibacterial nanocomposite hydrogels for wound healing
    Qin, Mingming
    Guo, Yanqiu
    Su, Feifei
    Huang, Xiaopeng
    Qian, Qiuping
    Zhou, Yunlong
    Pan, Jingye
    CHEMICAL ENGINEERING JOURNAL, 2023, 455
  • [45] Efficient Synthesis and Characterization of Antibacterial Xanthan Gum-Based Self-Healing Hydrogels: Conventional Versus Microwave Treated
    Moghaddam, Homa Etemadi
    Salehi, Mahsa Baghban
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (12)
  • [46] Cr(VI) removal by cellulose-based composite adsorbent with a double-network structure
    Pei, Yanbo
    Li, Menglin
    Li, Wei
    Su, Kai
    Chen, Junmin
    Yang, Hongwei
    Hu, Daiyan
    Zhang, Shengli
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 625
  • [47] Double-network polyvinyl alcohol composite hydrogel with self-healing and low friction
    Zhang, Zhouqiang
    Ye, Zishuo
    Hu, Feng
    Wang, Wenbo
    Zhang, Shoujing
    Gao, Li
    Lu, Hailin
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (04)
  • [48] A self-healing and environmental stable fully physical crosslinked double-network ion hydrogel sensor
    Zhao, Yuan
    Liu, Yafei
    Shang, Qiong
    Feng, Huixia
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2024, 111 (03) : 806 - 818
  • [49] High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose
    Wei Chen
    Yunhao Bu
    Delin Li
    Chuanjie Liu
    Guangxue Chen
    Xiaofang Wan
    Nan Li
    Cellulose, 2020, 27 : 853 - 865
  • [50] An injectable, self-healing, and robust double-network composite hydrogel with incorporation of nano-lignin
    Mei, Runwei
    Zhu, Haiyan
    Bai, Huiyu
    Dong, Weifu
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 706