Synthesis of cellulose-based double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties

被引:122
|
作者
Wang, Yixi [1 ,2 ,3 ,4 ]
Wang, Zhicun [1 ,2 ,3 ,4 ]
Wu, Keliang [1 ,2 ,3 ,4 ]
Wu, Jianning [1 ,2 ,3 ,4 ]
Meng, Guihua [1 ,2 ,3 ,4 ]
Liu, Zhiyong [1 ,2 ,3 ,4 ]
Guo, Xuhong [1 ,2 ,3 ,4 ,5 ]
机构
[1] Shihezi Univ, Sch Chem & Chem Engn, Shihezi 832003, Xinjiang, Peoples R China
[2] Key Lab Green Proc Chem Engn Xinjiang Bingtuan, Shihezi 832003, Xinjiang, Peoples R China
[3] Key Lab Mat Oriented Chem Engn Xinjiang Uygur Aut, Shihezi 832003, Xinjiang, Peoples R China
[4] Engn Res Ctr Mat Oriented Chem Engn Xinjiang Bing, Shihezi 832003, Xinjiang, Peoples R China
[5] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Hydrogel; Double network; High strength; Self-healing; Antibacterial; POLY(ACRYLIC ACID) HYDROGELS; SHAPE-MEMORY PROPERTIES; SUPRAMOLECULAR HYDROGELS; CROSS-LINKING; IN-SITU; COMPOSITES; BEHAVIOR; WATER;
D O I
10.1016/j.carbpol.2017.03.070
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Novel antibacterial double-network (DN) hydrogels with superior mechanical and self-healing properties are developed via the UV-initiated copolymerization of polyacrylic acid (PAA)-grafted quaternized cellulose (QCE) and polyvinyl alcohol (PVA). The QCE functioned as an antibacterial agent, resulting in excellent antibacterial capability (antibacterial rate >93%). The hydrogels are thus protected from microbial attack in natural environments, prolonging their lifetime. The PVA functioned as a physical cross-linker, resulting in superior mechanical properties. At PVA and QCE contents of 8% and 1.5%, respectively, the strain and stress at break of hydrogel were 465.37% and 1.13 MPa, respectively. The hydrogel maintained good self-healing properties owing to ionic bonding between the ferric ions and carboxylic groups, and hydrogen bonding between the PVA molecules. The hydrogel was responsive to pH; its water-holding ability could be controlled by changing the pH. The material is simply prepared and used. Hydrogels with such excellent properties could be applied in various biomedical fields. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:112 / 120
页数:9
相关论文
共 50 条
  • [21] Self-healing, antibacterial, and conductive double network hydrogel for strain sensors
    Liu, Chenglu
    Xu, Zhengyan
    Chandrasekaran, Sundaram
    Liu, Yongping
    Wu, Mengyang
    CARBOHYDRATE POLYMERS, 2023, 303
  • [22] Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels
    Ge, Wenjiao
    Cao, Shan
    Shen, Feng
    Wang, Yuyuan
    Ren, Junli
    Wang, Xiaohui
    CARBOHYDRATE POLYMERS, 2019, 224
  • [23] Silver chloride nanoparticles embedded in self-healing hydrogels with biocompatible and antibacterial properties
    Pasaribu, Subur P.
    Ginting, Mimpin
    Masmur, Indra
    Kaban, Jamaran
    Hestina
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 310
  • [24] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Imtiaz Hussain
    Xiaofeng Ma
    Linlin Wu
    Zhenyang Luo
    Cellulose, 2022, 29 : 5725 - 5743
  • [25] Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels
    Hussain, Imtiaz
    Ma, Xiaofeng
    Wu, Linlin
    Luo, Zhenyang
    CELLULOSE, 2022, 29 (10) : 5725 - 5743
  • [26] A Facile Strategy for Preparing Tough, Self-Healing Double-Network Hyaluronic Acid Hydrogels Inspired by Mussel Cuticles
    Guo, Zhongwei
    Mi, Shengli
    Sun, Wei
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2019, 304 (04)
  • [27] Dual-network hydrogels based on dynamic imine and borate ester bonds with antibacterial and self-healing properties
    Liu, Yalei
    Chang, Junfang
    Mao, Jie
    Wang, Sui
    Guo, Zhiyong
    Hu, Yufang
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2023, 230
  • [28] High voltage and self-healing zwitterionic double-network hydrogels as electrolyte for zinc-ion hybrid supercapacitor/battery
    Chen, Qiuhong
    Zhao, Jiaming
    Chen, Zhitian
    Jin, Yanzi
    Chen, Jiucun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (57) : 23909 - 23918
  • [29] Self-healing cellulose-based flexible sensor: A review
    Zhang, Yue-hong
    Lei, Qin-yang
    Liu, Rui-jing
    Zhang, Lei
    Lyu, Bin
    Liu, Lei-peng
    Ma, Jian-zhong
    INDUSTRIAL CROPS AND PRODUCTS, 2023, 206
  • [30] Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing
    Deng, Pengpeng
    Yao, Lichao
    Chen, Juanjuan
    Tang, Zhigang
    Zhou, Jinping
    CARBOHYDRATE POLYMERS, 2022, 276