Using the past to estimate sensory uncertainty

被引:19
作者
Beierholm, Ulrik [1 ]
Rohe, Tim [2 ,3 ]
Ferrari, Ambra [4 ]
Stegle, Oliver [5 ,6 ,7 ]
Noppeney, Uta [4 ,8 ]
机构
[1] Univ Durham, Psychol Dept, Durham, England
[2] Univ Tubingen, Dept Psychiat & Psychotherapy, Tubingen, Germany
[3] Friedrich Alexander Univ Erlangen Nuernberg, Dept Psychol, Erlangen, Germany
[4] Univ Birmingham, Ctr Computat Neurosci & Cognit Robot, Birmingham, W Midlands, England
[5] Max Planck Inst Intelligent Syst, Tubingen, Germany
[6] European Mol Biol Lab, Genome Biol Unit, Heidelberg, Germany
[7] German Canc Res Ctr, Div Computat Genom & Syst Genet, Heidelberg, Germany
[8] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Nijmegen, Netherlands
基金
欧洲研究理事会;
关键词
MOTION CUES; INTEGRATION; INFORMATION; INFERENCE; TEXTURE;
D O I
10.7554/eLife.54172
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To form a more reliable percept of the environment, the brain needs to estimate its own sensory uncertainty. Current theories of perceptual inference assume that the brain computes sensory uncertainty instantaneously and independently for each stimulus. We evaluated this assumption in four psychophysical experiments, in which human observers localized auditory signals that were presented synchronously with spatially disparate visual signals. Critically, the visual noise changed dynamically over time continuously or with intermittent jumps. Our results show that observers integrate audiovisual inputs weighted by sensory uncertainty estimates that combine information from past and current signals consistent with an optimal Bayesian learner that can be approximated by exponential discounting. Our results challenge leading models of perceptual inference where sensory uncertainty estimates depend only on the current stimulus. They demonstrate that the brain capitalizes on the temporal dynamics of the external world and estimates sensory uncertainty by combining past experiences with new incoming sensory signals.
引用
收藏
页数:42
相关论文
共 42 条
[1]  
Acerbi L, 2017, ADV NEUR IN, V30
[2]   Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception [J].
Acerbi, Luigi ;
Dokka, Kalpana ;
Angelaki, Dora E. ;
Ma, Wei Ji .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (07)
[3]   On the Origins of Suboptimality in Human Probabilistic Inference [J].
Acerbi, Luigi ;
Vijayakumar, Sethu ;
Wolpert, Daniel M. .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (06)
[4]  
Adams R.P., 2007, BAYESIAN ONLINE CHAN
[5]   The ventriloquist effect results from near-optimal bimodal integration [J].
Alais, D ;
Burr, D .
CURRENT BIOLOGY, 2004, 14 (03) :257-262
[6]   The CIPICHRTF database [J].
Algazi, VR ;
Duda, RO ;
Thompson, DM ;
Avendano, C .
PROCEEDINGS OF THE 2001 IEEE WORKSHOP ON THE APPLICATIONS OF SIGNAL PROCESSING TO AUDIO AND ACOUSTICS, 2001, :99-102
[7]   To integrate or not to integrate: Temporal dynamics of hierarchical Bayesian causal inference [J].
Aller, Mate ;
Noppeney, Uta .
PLOS BIOLOGY, 2019, 17 (04)
[8]   Bayesian integration of visual and auditory signals for spatial localization [J].
Battaglia, PW ;
Jacobs, RA ;
Aslin, RN .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2003, 20 (07) :1391-1397
[9]   Probabilistic Population Codes for Bayesian Decision Making [J].
Beck, Jeffrey M. ;
Ma, Wei Ji ;
Kiani, Roozbeh ;
Hanks, Tim ;
Churchland, Anne K. ;
Roitman, Jamie ;
Shadlen, Michael N. ;
Latham, Peter E. ;
Pouget, Alexandre .
NEURON, 2008, 60 (06) :1142-1152
[10]   Learning the value of information in an uncertain world [J].
Behrens, Timothy E. J. ;
Woolrich, Mark W. ;
Walton, Mark E. ;
Rushworth, Matthew F. S. .
NATURE NEUROSCIENCE, 2007, 10 (09) :1214-1221