Argument-based assessment of predictive uncertainty of data-driven environmental models

被引:9
作者
Knusel, Benedikt [1 ,2 ]
Baumberger, Christoph [1 ]
Zumwald, Marius [1 ,2 ]
Bresch, David N. [1 ,3 ]
Knutti, Reto [2 ]
机构
[1] Swiss Fed Inst Technol, Inst Environm Decis, Univ Str 16, CH-8092 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Univ Str 16, CH-8092 Zurich, Switzerland
[3] Fed Off Meteorol & Climatol MeteoSwiss, Operat Ctr 1, CH-8058 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Uncertainty; Data-driven models; Argument analysis; Predictions; Decision-making; DECISION-MAKING; EXPERT JUDGMENT; CLIMATE; FRAMEWORK;
D O I
10.1016/j.envsoft.2020.104754
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Increasing volumes of data allow environmental scientists to use machine learning to construct data-driven models of phenomena. These models can provide decision-relevant predictions, but confident decision-making requires that the involved uncertainties are understood. We argue that existing frameworks for characterizing uncertainties are not appropriate for data-driven models because of their focus on distinct locations of uncertainty. We propose a framework for uncertainty assessment that uses argument analysis to assess the justification of the assumption that the model is fit for the predictive purpose at hand. Its flexibility makes the framework applicable to data-driven models. The framework is illustrated using a case study from environmental science. We show that data-driven models can be subject to substantial second-order uncertainty, i.e., uncertainty in the assessment of the predictive uncertainty, because they are often applied to ill-understood problems. We close by discussing the implications of the predictive uncertainties of data-driven models for decision-making.
引用
收藏
页数:13
相关论文
共 45 条
  • [21] Hansson Sven Ove, 2016, LOGIC ARGUMENTATION, V10, DOI [10.1007/978-3-319-30549-3., DOI 10.1007/978-3-319-30549-3]
  • [22] The gap between simulation and understanding in climate modeling
    Held, IM
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2005, 86 (11) : 1609 - +
  • [23] Selenium deficiency risk predicted to increase under future climate change
    Jones, Gerrad D.
    Droz, Boris
    Greve, Peter
    Gottschalk, Pia
    Poffet, Deyan
    McGrath, Steve P.
    Seneviratne, Sonia I.
    Smith, Pete
    Winkel, Lenny H. E.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (11) : 2848 - 2853
  • [24] A method for the analysis of assumptions in model-based environmental assessments
    Kloprogge, Penny
    van der Sluijs, Jeroen P.
    Petersen, Arthur C.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2011, 26 (03) : 289 - 301
  • [25] Applying big data beyond small problems in climate research
    Knusel, Benedikt
    Zumwald, Marius
    Baumberger, Christoph
    Hadorn, Gertrude Hirsch
    Fischer, Erich M.
    Bresch, David N.
    Knutti, Reto
    [J]. NATURE CLIMATE CHANGE, 2019, 9 (03) : 196 - 202
  • [26] Knusel Benedikt, UNDERSTANDING CLIMAT
  • [27] Knutti Reto, 2018, CLIMATE MODELLING, V59, P325, DOI [10.1007/978-3-319-65058-6_11, DOI 10.1007/978-3-319-65058-6_11]
  • [28] Kwakkel Jan H., 2010, International Journal of Technology, Policy and Management, V10, P299, DOI 10.1504/IJTPM.2010.036918
  • [29] Why pay attention to paths in the practice of environmental modelling?
    Lahtinen, Tuomas J.
    Guillaume, Joseph H. A.
    Hamalainen, Raimo P.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2017, 92 : 74 - 81
  • [30] Lloyd ElisabethA., 2009, Aristotelian Society Supplementary, V83, P213, DOI [DOI 10.1111/J.1467-8349.2009.00179.X, 10.1111/j.14678349.2009.00179.x, DOI 10.1111/J.14678349.2009.00179.X]