Weighted and anisotropic Sobolev inequality with extremal

被引:10
作者
Bal, Kaushik [1 ]
Garain, Prashanta [2 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Ben Gurian Univ Negev, Dept Math, POB 653, IL-8410501 Beer Sheva, Israel
关键词
35A23; 35J62; 35J70; 35J75;
D O I
10.1007/s00229-021-01298-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded smooth domain Omega subset of R-N with N >= 2, we establish a weighted and an anisotropic version of Sobolev inequality related to the embedding W-0(1,p)(Omega)hooked right arrow L-q(Omega) for 1<p<infinity and 2 <= p<infinity respectively. Our main emphasize is the case of 0<q<1 and we deal with a class of Muckenhoupt weights. Moreover, we obtain existence results for weighted and anisotropic p-Laplace equation with mixed singular nonlinearities and observe that the extremals of our inequalities are associated to such singular problems.
引用
收藏
页码:101 / 117
页数:17
相关论文
共 26 条
[1]   On a problem of Huang concerning best constants in Sobolev embeddings [J].
Anello, Giovanni ;
Faraci, Francesca ;
Iannizzotto, Antonio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (03) :767-779
[2]  
Aubin T., 1976, J DIFFER GEOM, V11, P573
[3]   The pseudo-p-Laplace eigenvalue problem and viscosity solutions as p→∞ [J].
Belloni, M ;
Kawohl, B .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2004, 10 (01) :28-52
[4]   Semilinear elliptic equations with singular nonlinearities [J].
Boccardo, Lucio ;
Orsina, Luigi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :363-380
[5]   Existence and uniqueness for p-Laplace equations involving singular nonlinearities [J].
Canino, Annamaria ;
Sciunzi, Berardino ;
Trombetta, Alessandro .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02)
[6]   Symmetry results for critical anisotropic p-Laplacian equations in convex cones [J].
Ciraolo, Giulio ;
Figalli, Alessio ;
Roncoroni, Alberto .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2020, 30 (03) :770-803
[7]   Nonlinear elliptic equations with singular nonlinearities [J].
De Cave, Linda Maria .
ASYMPTOTIC ANALYSIS, 2013, 84 (3-4) :181-195
[8]  
DiCastro a, 2008, THESIS U ROME SAPIEN
[9]  
Drabek P., 1997, QUASILINEAR ELLIPTIC, DOI DOI 10.1515/9783110804775
[10]   Fractional Sobolev inequalities associated with singular problems [J].
Ercole, G. ;
Pereira, G. A. .
MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) :1666-1685