Divisibility results for zero-cycles

被引:2
作者
Gazaki, Evangelia [1 ]
Hiranouchi, Toshiro [2 ]
机构
[1] Univ Virginia, Dept Math, 221 Kerchof Hall,141 Cabell Dr, Charlottesville, VA 22904 USA
[2] Kyushu Inst Technol, Grad Sch Engn, Dept Basic Sci, Tobata Ku, 1-1 Sensui Cho, Kitakyushu, Fukuoka 8048550, Japan
关键词
Elliptic curves; Chow groups; Local fields; RATIONALLY CONNECTED VARIETIES; MILNOR K-GROUPS; FINITENESS THEOREM; ABELIAN-VARIETIES; ELLIPTIC-CURVES; SELF-PRODUCT; BRAUER GROUP; CHOW-GROUP; QUADRICS; FIELD;
D O I
10.1007/s40879-021-00471-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a product of smooth projective curves over a finite unramified extension k of Q(p). Suppose that the Albanese variety of X has good reduction and that X has a k-rational point. We propose the following conjecture. The kernel of the Albanese map CH0(X)(0) -> Alb(X)(k) is p-divisible. When p is an odd prime, we prove this conjecture for a large family of products of elliptic curves and certain principal homogeneous spaces of abelian varieties. Using this, we provide some evidence for a local-to-global conjecture for zero-cycles of Colliot-Thelene and Sansuc (Duke Math J 48(2):421-447, 1981), and Kato and Saito (Contemporary Mathematics, vol. 55:255-331, 1986).
引用
收藏
页码:1458 / 1501
页数:44
相关论文
共 52 条
[1]  
[Anonymous], 1968, J. Math Kyoto Univ, DOI [10.1215/kjm/1250523940, DOI 10.1215/KJM/1250523940]
[2]  
[Anonymous], 1995, Journal de theorie des nombres de Bordeaux
[3]  
[Anonymous], 1990, K-Theory, DOI DOI 10.1007/BF00533151
[4]  
Beilinson Bei A. A., 1984, Current problems in mathematics, Vol. 24, V24, P181
[5]  
BLOCH S, 1984, J REINE ANGEW MATH, V350, P94
[6]  
Cassels J., 1964, J REINE ANGEW MATH, V216, P150
[7]   ON THE CHOW GROUPS OF CERTAIN RATIONAL SURFACES - A SEQUEL TO A PAPER OF BLOCH,S. [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
DUKE MATHEMATICAL JOURNAL, 1981, 48 (02) :421-447
[8]   CHOW-GROUP OF CODIMENSION 2 OF DEFINED VARIETIES OVER A NUMBER-FIELD - A FINITENESS THEOREM FOR TORSION [J].
COLLIOTTHELENE, JL ;
RASKIND, W .
INVENTIONES MATHEMATICAE, 1991, 105 (02) :221-245
[9]  
COLLIOTTHELENE JL, 1987, J REINE ANGEW MATH, V373, P37
[10]  
COLLIOTTHELENE JL, 1987, J REINE ANGEW MATH, V374, P72