Prussian blue analogues as platform materials for understanding and developing oxygen evolution reaction electrocatalysts

被引:26
作者
Lee, Ji Hoon [1 ,2 ]
Kattel, Shyam [3 ]
Wang, Yan [4 ]
Tackett, Brian M. [1 ]
Xie, Zhenhua [4 ]
Hwang, Sooyeon [5 ]
Denny, Steven R. [1 ]
Xu, Wenqian [6 ]
Chen, Jingguang G. [1 ,4 ]
机构
[1] Columbia Univ, Dept Chem Engn, New York, NY 10027 USA
[2] Kyungpook Natl Univ, Sch Mat Sci & Engn, 80 Daehak Ro, Daegu 41566, South Korea
[3] Florida A&M Univ, Dept Phys, Tallahassee, FL 32307 USA
[4] Brookhaven Natl Lab, Chem Div, Upton, NY 11973 USA
[5] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[6] Argonne Natl Lab, Xray Sci Div, Adv Photon Source, Argonne, IL 60439 USA
关键词
Oxygen evolution reaction; Prussian blue analogues; Platform materials; Binding energy difference; Density functional theory;
D O I
10.1016/j.jcat.2020.12.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal based materials containing Fe have drawn great attention as oxygen evolution reaction (OER) catalysts. The nature of the electrocatalytic active species remains under debate due to the ambiguous physicochemical properties of the catalyst materials, such as the oxidation states and crystal structures. Here, in order to address this issue, transition metal Prussian blue analogues (TM-PBA, Na(TM)(Fe) (CN)(6), TM = V, Fe, Co, and Ni) with an isomorphous structure are investigated for OER catalysis. Our combined experimental measurements and density functional theory (DFT) calculations reveal that TM-PBAs exhibit volcano-like OER activity with Ni-PBA located near the top of the volcano. Such a volcano-like activity profile can be attributed to the distinctive binding energy difference between *O and *OH on different TM-PBAs surfaces. This work demonstrates that TM-PBAs can be used as platform materials for understanding structure-property-activity relationships in OER catalysts. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:390 / 398
页数:9
相关论文
共 64 条
  • [1] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [2] Beyond the top of the volcano? - A unified approach to electrocatalytic oxygen reduction and oxygen evolution
    Busch, Michael
    Halck, Niels B.
    Kramm, Ulrike I.
    Siahrostami, Samira
    Krtil, Petr
    Rossmeisl, Jan
    [J]. NANO ENERGY, 2016, 29 : 126 - 135
  • [3] Atomic-Scale Observation of LiFePO4 and LiCoO2 Dissolution Behavior in Aqueous Solutions
    Byeon, Pilgyu
    Bae, Hyung Bin
    Chung, Hee-Suk
    Lee, Sang-Gil
    Kim, Jin-Gyu
    Lee, Hyeon Jeong
    Choi, Jang Wook
    Chung, Sung-Yoon
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (45)
  • [4] Promise and reality of post-lithium-ion batteries with high energy densities
    Choi, Jang Wook
    Aurbach, Doron
    [J]. NATURE REVIEWS MATERIALS, 2016, 1 (04):
  • [5] Guidelines for the Rational Design of Ni-Based Double Hydroxide Electrocatalysts for the Oxygen Evolution Reaction
    Diaz-Morales, Oscar
    Ledezma-Yanez, Isis
    Koper, Marc T. M.
    Calle-Vallejo, Federico
    [J]. ACS CATALYSIS, 2015, 5 (09): : 5380 - 5387
  • [6] NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes
    Dionigi, Fabio
    Strasser, Peter
    [J]. ADVANCED ENERGY MATERIALS, 2016, 6 (23)
  • [7] Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
    Dudarev, SL
    Botton, GA
    Savrasov, SY
    Humphreys, CJ
    Sutton, AP
    [J]. PHYSICAL REVIEW B, 1998, 57 (03) : 1505 - 1509
  • [8] Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation
    Feng, Yongqiang
    Wang, Xiao
    Dong, Peipei
    Li, Jie
    Feng, Li
    Huang, Jianfeng
    Cao, Liyun
    Feng, Liangliang
    Kajiyoshi, Koji
    Wang, Chunru
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [9] Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
    Friebel, Daniel
    Louie, Mary W.
    Bajdich, Michal
    Sanwald, Kai E.
    Cai, Yun
    Wise, Anna M.
    Cheng, Mu-Jeng
    Sokaras, Dimosthenis
    Weng, Tsu-Chien
    Alonso-Mori, Roberto
    Davis, Ryan C.
    Bargar, John R.
    Norskov, Jens K.
    Nilsson, Anders
    Bell, Alexis T.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) : 1305 - 1313
  • [10] Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst
    Gao, Minrui
    Sheng, Wenchao
    Zhuang, Zhongbin
    Fang, Qianrong
    Gu, Shuang
    Jiang, Jun
    Yan, Yushan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (19) : 7077 - 7084