Stabilizing non-linear model predictive control using linear parameter-varying embeddings and tubes

被引:11
|
作者
Hanema, Jurre [1 ]
Toth, Roland [1 ,2 ]
Lazar, Mircea [1 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, Control Syst Grp, Eindhoven, Netherlands
[2] Inst Comp Sci & Control, Syst & Control Lab, Budapest, Hungary
来源
IET CONTROL THEORY AND APPLICATIONS | 2021年 / 15卷 / 10期
基金
欧洲研究理事会;
关键词
LPV SYSTEMS SUBJECT; MAX MPC ALGORITHM; BOUNDED RATES; DESIGN;
D O I
10.1049/cth2.12131
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a model predictive control (MPC) approach for non-linear systems where the non-linear dynamics are embedded inside a linear parameter-varying (LPV) representation. The non-linear MPC problem is therefore replaced by an LPV MPC problem, without using linearization. Compared to general non-linear MPC, advantages of this approach are that it allows for the tractable construction of a terminal set and cost, and that only a single convex program must be solved online. The key idea that enables proving recursive feasibility and stability, is to restrict the state evolution of the non-linear system to a time-varying sequence of state constraint sets. Because in LPV embeddings, there exists a relationship between the scheduling and state variables, these state constraints are used to construct a corresponding future scheduling tube. Compared to non-time-varying state constraints, tighter bounds on the future scheduling trajectories are obtained. Computing a scheduling tube in this setting requires applying a non-linear function to the sequence of constraint sets. Outer approximations of this non-linear projection-based scheduling tube can be found, e.g., via interval analysis. The computational properties of the approach are demonstrated on numerical examples.
引用
收藏
页码:1404 / 1421
页数:18
相关论文
共 50 条
  • [1] Stabilizing Non-linear MPC Using Linear Parameter-Varying Representations
    Hanema, Jurre
    Toth, Roland
    Lazar, Mircea
    2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [2] Linear parameter-varying model predictive control for nonlinear systems using general polytopic tubes
    Abbas H.S.
    Automatica, 2024, 160
  • [3] Model Predictive Control for Linear Parameter-Varying Systems
    Morfin-Magana, Rodrigo
    Rodriguez-Flores, Ruben
    Ramos-Paz, Serafin
    Jesus Rico-Melgoza, J.
    Ornelas-Tellez, Fernando
    2018 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC), 2018,
  • [4] Explicit Model Predictive Control for Linear Parameter-Varying Systems
    Besselmann, Thomas
    Lofberg, Johan
    Morari, Manfred
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 3848 - 3853
  • [5] Model Predictive Control of Linear Parameter-Varying Systems Using Gaussian Processes
    Elkamel, Ahmed
    Morsi, Abdelrahman
    Darwish, Mohamed
    Abbas, Hossam S.
    Amin, Mohamed H.
    2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 452 - 457
  • [6] Estimation and model predictive control of non-linear batch processes using linear parameter varying models
    Lakshmanan, N.M.
    Arkun, Y.
    International Journal of Control, 1999, 72 (07): : 659 - 675
  • [7] Estimation and model predictive control of non-linear batch processes using linear parameter varying models
    Lakshmanan, NM
    Arkun, Y
    INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (7-8) : 659 - 675
  • [8] Stabilizing model predictive control of time-varying non-linear systems using linear matrix inequalities
    He, De-Feng
    Huang, Hua
    Chen, Qiu-Xia
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2016, 33 (01) : 21 - 35
  • [9] Linear Parameter-Varying Model Predictive Control for Hydraulic Wind Turbine
    Han, Bin
    Gao, Hongyan
    ACTUATORS, 2022, 11 (10)
  • [10] Linear Parameter-Varying Model Predictive Control of AUV for Docking Scenarios
    Uchihori, Hiroshi
    Cavanini, Luca
    Tasaki, Mitsuhiko
    Majecki, Pawel
    Yashiro, Yusuke
    Grimble, Michael J.
    Yamamoto, Ikuo
    van der Molen, Gerrit M.
    Morinaga, Akihiro
    Eguchi, Kazuki
    APPLIED SCIENCES-BASEL, 2021, 11 (10):