Sparse inertially arbitrary patterns

被引:4
作者
Cavers, Michael S. [2 ]
Vander Meulen, Kevin N. [1 ]
Vanderspek, Loretta [3 ]
机构
[1] Redeemer Univ Coll, Dept Math, Ancaster, ON L9K 1J4, Canada
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[3] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Sign pattern; Nonzero pattern; Inertia; Spectrum; Potentially nilpotent; ZERO-NONZERO PATTERNS; SIGN PATTERNS; ORDER-4;
D O I
10.1016/j.laa.2009.06.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n-by-n sign pattern A is a matrix with entries in {+, -, 0}. An n-by-n nonzero pattern A is a matrix with entries in {*,0} where * represents a nonzero entry. A pattern A is inertially arbitrary if for every set of nonnegative integers n(1), n(2), n(3) with n(1) + n(2) + n(3) = n there is a real matrix with pattern A having inertia (n(1), n(2), n(3)). We explore how the inertia of a matrix relates to the signs of the coefficients of its characteristic polynomial and describe the inertias allowed by certain sets of polynomials. This information is useful for describing the inertia of a pattern and can help show a pattern is inertially arbitrary. Britz et al. [T. Britz, J.J. McDonald, D.D. Olesky, R van den Driessche, Minimal spectrally arbitrary sign patterns, SIAM J. Matrix Anal. Appl. 26 (2004) 257-271] conjectured that irreducible spectrally arbitrary patterns must have at least 2n nonzero entries; we demonstrate that irreducible inertially arbitrary patterns can have less than 2n nonzero entries. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:2024 / 2034
页数:11
相关论文
共 9 条
[1]   Minimal spectrally arbitrary sign patterns [J].
Britz, T ;
McDonald, JJ ;
Olesky, DD ;
van den Driessche, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) :257-271
[2]  
Cavers MS, 2007, ELECTRON J LINEAR AL, V16, P30
[3]   Spectrally and inertially arbitrary sign patterns [J].
Cavers, MS ;
Vander Meulen, KN .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 394 :53-72
[4]   Spectrally arbitrary zero-nonzero patterns of order 4 [J].
Corpuz, L. ;
McDonald, J. J. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (03) :249-273
[5]   Spectrally arbitrary patterns:: Reducibility and the 2n conjecture for n=5 [J].
DeAlba, Luz M. ;
Hentzel, Irvin R. ;
Hogben, Leslie ;
McDonald, Judith ;
Mikkelson, Rana ;
Pryporova, Olga ;
Shader, Bryan ;
Vander Meulen, Kevin N. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 423 (2-3) :262-276
[6]   Spectrally arbitrary patterns [J].
Drew, JH ;
Johnson, CR ;
Olesky, DD ;
van den Driessche, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 308 (1-3) :121-137
[7]  
Horn R. A., 2012, Matrix Analysis
[8]   Inertially arbitrary sign patterns with no nilpotent realization [J].
Kim, In-Jae ;
Olesky, D. D. ;
van den Driessche, P. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) :264-283
[9]   Inertias of zero-nonzero patterns [J].
Kim, In-Jae ;
McDonald, J. J. ;
Olesky, D. D. ;
Van Den Driessche, P. .
LINEAR & MULTILINEAR ALGEBRA, 2007, 55 (03) :229-238