Enhanced analog performance of doping-less dual material and gate stacked architecture of junctionless transistor with high-k spacer

被引:25
作者
Amin, S. Intekhab [1 ]
Sarin, R. K. [1 ]
机构
[1] Dr BR Ambedkar Natl Inst Technol Jalandhar, Dept Elect & Commun Engn, Jalandhar, Punjab, India
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2016年 / 122卷 / 04期
关键词
NANOWIRE TRANSISTOR; DESIGN;
D O I
10.1007/s00339-016-9904-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The potential effectiveness of high-k spacer for the enhanced analog performance of doping-less dual material double-gate (DL-DMDG) junctionless transistor (JLT) is proposed. The impact of gate stacked (GS = SiO2 + high-k) architecture on DL-DMDG is also demonstrated. The charge plasma technique is used to form n + source/drain in an intrinsic silicon film by proper selection of source/drain electrode work function. The analog parameters are analyzed for DL-DMDG JLT with high-k spacer (DL-DMDG-HK) and gate stacked architecture of DL-DMDG-HK (DL-GSDMDG-HK). The results are compared with DL-DMDG JLT and its gate stacked architecture (DL-GSDMDG) JLT. The DL-DMDG-HK JLT shows improved electrostatic integrity with enhanced on-state current, transconductance (g(m)), early voltage (V-EA) and intrinsic gain (A(V)) as compared to DL-DMDG and DL-GSDMDG-JLTs. Moreover, DL-GSDMDG-HK further enhances these figures of merits (FOMs).
引用
收藏
页数:9
相关论文
共 26 条
[1]   Study of Discrete Doping-Induced Variability in Junctionless Nanowire MOSFETs Using Dissipative Quantum Transport Simulations [J].
Aldegunde, Manuel ;
Martinez, Antonio ;
Barker, John R. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (02) :194-196
[2]  
[Anonymous], 2010, 10 IEEE INT C SOL ST
[3]   A Dual-Material Gate Junctionless Transistor With High-k Spacer for Enhanced Analog Performance [J].
Baruah, Ratul K. ;
Paily, Roy P. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2014, 61 (01) :123-128
[4]  
Chaudhry A, 2004, IEEE T ELECTRON DEV, V51, P1463, DOI [10.1109/TED.2004.833961, 10.1109/ted.2004.833961]
[5]   The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFET's [J].
Cheng, BH ;
Cao, M ;
Rao, R ;
Inani, A ;
Voorde, PV ;
Greene, WM ;
Stork, JMC ;
Yu, ZP ;
Zeitzoff, PM ;
Woo, JCS .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (07) :1537-1544
[6]   Sensitivity of Threshold Voltage to Nanowire Width Variation in Junctionless Transistors [J].
Choi, Sung-Jin ;
Moon, Dong-Il ;
Kim, Sungho ;
Duarte, Juan P. ;
Choi, Yang-Kyu .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (02) :125-127
[7]   Junctionless Nanowire Transistor (JNT): Properties and design guidelines [J].
Colinge, J. P. ;
Kranti, A. ;
Yan, R. ;
Lee, C. W. ;
Ferain, I. ;
Yu, R. ;
Akhavan, N. Dehdashti ;
Razavi, P. .
SOLID-STATE ELECTRONICS, 2011, 65-66 :33-37
[8]  
Colinge JP, 2010, NAT NANOTECHNOL, V5, P225, DOI [10.1038/nnano.2010.15, 10.1038/NNANO.2010.15]
[9]  
Doria RT., 2011, J INTEGR CIRCUITS SY, V7, P121
[10]   Analysis of Threshold Voltage Variability Due to Random Dopant Fluctuations in Junctionless FETs [J].
Gnudi, A. ;
Reggiani, S. ;
Gnani, E. ;
Baccarani, G. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (03) :336-338