NORMALIZED LEAST-MEAN-SQUARE ALGORITHMS WITH MINIMAX CONCAVE PENALTY

被引:0
|
作者
Kaneko, Hiroyuki [1 ]
Yukawa, Masahiro [1 ,2 ]
机构
[1] Keio Univ, Dept Elect & Elect Engn, Tokyo, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Wako, Saitama, Japan
关键词
adaptive filtering; normalized least-mean-square algorithm; minimax concave penalty; proximal forward-backward splitting; soft/firm shrinkage; SIGNAL RECOVERY; SPARSE; LMS;
D O I
10.1109/icassp40776.2020.9053638
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a novel problem formulation for sparsity-aware adaptive filtering based on the nonconvex minimax concave (MC) penalty, aiming to obtain a sparse solution with small estimation bias. We present two algorithms: the first algorithm uses a single firm-shrinkage operation, while the second one uses double soft-shrinkage operations. The twin soft-shrinkage operations compensate each other, promoting sparsity while avoiding a serious increase of biases. The whole cost function is convex in certain parameter settings, while the instantaneous cost function is always nonconvex. Numerical examples show the superiority compared to the existing sparsity-aware adaptive filtering algorithms in system mismatch and sparseness of the solution.
引用
收藏
页码:5445 / 5449
页数:5
相关论文
共 50 条
  • [21] A Variable Step-Size Diffusion Normalized Least-Mean-Square Algorithm with a Combination Method Based on Mean-Square Deviation
    Jung, Sang Mok
    Seo, Ji-Hye
    Park, PooGyeon
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2015, 34 (10) : 3291 - 3304
  • [22] An Efficient Carrier Frequency Offset Tracking for OFDMA Systems Using Normalized Least-Mean-Square Algorithm
    S. Ilaiyaraja
    K. Balasubadra
    B. Senthil
    Circuits, Systems, and Signal Processing, 2020, 39 : 4930 - 4942
  • [23] A Variable Step-Size Diffusion Normalized Least-Mean-Square Algorithm with a Combination Method Based on Mean-Square Deviation
    Sang Mok Jung
    Ji-Hye Seo
    PooGyeon Park
    Circuits, Systems, and Signal Processing, 2015, 34 : 3291 - 3304
  • [24] LEAST-MEAN-SQUARE SPATIAL FILTER FOR IR SENSORS
    TAKKEN, EH
    FRIEDMAN, D
    MILTON, AF
    NITZBERG, R
    APPLIED OPTICS, 1979, 18 (24): : 4210 - 4222
  • [25] An Efficient Carrier Frequency Offset Tracking for OFDMA Systems Using Normalized Least-Mean-Square Algorithm
    Ilaiyaraja, S.
    Balasubadra, K.
    Senthil, B.
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (10) : 4930 - 4942
  • [26] The Generalized Complex Kernel Least-Mean-Square Algorithm
    Boloix-Tortosa, Rafael
    Jose Murillo-Fuentes, Juan
    Tsaftaris, Sotirios A.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (20) : 5213 - 5222
  • [27] Distributed average consensus with least-mean-square deviation
    Xiao, Lin
    Boyd, Stephen
    Kim, Seung-Jean
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2007, 67 (01) : 33 - 46
  • [28] FREQUENCY-DOMAIN LEAST-MEAN-SQUARE ALGORITHM
    NARAYAN, SS
    PETERSON, AM
    PROCEEDINGS OF THE IEEE, 1981, 69 (01) : 124 - 126
  • [29] DESIGN OF LEAST-MEAN-SQUARE BASED ADAPTIVE OPTICAL EQUALIZERS
    GHOSH, A
    BARNER, J
    PAPARAO, P
    OPTICS COMMUNICATIONS, 1992, 91 (3-4) : 280 - 292
  • [30] Experimental evaluation of leaky least-mean-square algorithms for active noise reduction in communication headsets
    Cartes, DA
    Ray, LR
    Collier, RD
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2002, 111 (04): : 1758 - 1771