NORMALIZED LEAST-MEAN-SQUARE ALGORITHMS WITH MINIMAX CONCAVE PENALTY

被引:0
|
作者
Kaneko, Hiroyuki [1 ]
Yukawa, Masahiro [1 ,2 ]
机构
[1] Keio Univ, Dept Elect & Elect Engn, Tokyo, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Wako, Saitama, Japan
关键词
adaptive filtering; normalized least-mean-square algorithm; minimax concave penalty; proximal forward-backward splitting; soft/firm shrinkage; SIGNAL RECOVERY; SPARSE; LMS;
D O I
10.1109/icassp40776.2020.9053638
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a novel problem formulation for sparsity-aware adaptive filtering based on the nonconvex minimax concave (MC) penalty, aiming to obtain a sparse solution with small estimation bias. We present two algorithms: the first algorithm uses a single firm-shrinkage operation, while the second one uses double soft-shrinkage operations. The twin soft-shrinkage operations compensate each other, promoting sparsity while avoiding a serious increase of biases. The whole cost function is convex in certain parameter settings, while the instantaneous cost function is always nonconvex. Numerical examples show the superiority compared to the existing sparsity-aware adaptive filtering algorithms in system mismatch and sparseness of the solution.
引用
收藏
页码:5445 / 5449
页数:5
相关论文
共 50 条
  • [11] Convergence vector of normalized least-mean-square algorithm for predicting deterministic sinusoidal signals
    Wakabayashi, Yuko
    Satomi, Yuki
    Kawamura, Arata
    Iiguni, Youji
    ACOUSTICAL SCIENCE AND TECHNOLOGY, 2012, 33 (04) : 270 - 272
  • [12] A Variable Step Size Normalized Least-Mean-Square Algorithm Based on Data Reuse
    Rusu, Alexandru-George
    Paleologu, Constantin
    Benesty, Jacob
    Ciochina, Silviu
    ALGORITHMS, 2022, 15 (04)
  • [13] Least-Mean-Square Receding Horizon Estimation
    Kwon, Bokyu
    Han, Soohee
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
  • [14] A theoretical result of least-mean-square algorithm
    Wu Xiaojun
    Wang Shitong
    Zheng Yujie
    Yu Dongjun
    Yang Jingyu
    2005 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE AND TECHNOLOGY, PROCEEDINGS, 2005, : 333 - 337
  • [15] ANALYSIS OF THE MULTIPLE-ERROR AND BLOCK LEAST-MEAN-SQUARE ADAPTIVE ALGORITHMS
    DOUGLAS, SC
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1995, 42 (02): : 92 - 101
  • [16] The Decorrelated Kernel Least-Mean-Square Algorithm
    Zhao, Zhijin
    Jin, Mingming
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 367 - 371
  • [17] Reweighted nonnegative least-mean-square algorithm
    Chen, Jie
    Richard, Cedric
    Bermudez, Jose Carlos M.
    SIGNAL PROCESSING, 2016, 128 : 131 - 141
  • [18] Proportionate Normalized Least Mean Square Algorithms Based on Coefficient Difference
    Liu, Ligang
    Fukumoto, Masahiro
    Saiki, Sachio
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2010, E93A (05) : 972 - 975
  • [19] COMPLEX PROPORTIONATE-TYPE NORMALIZED LEAST MEAN SQUARE ALGORITHMS
    Wagner, Kevin T.
    Doroslovacki, Milos I.
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3285 - 3288
  • [20] On Convergence of Proportionate-Type Normalized Least Mean Square Algorithms
    Das, Rajib Lochan
    Chakraborty, Mrityunjoy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2015, 62 (05) : 491 - 495