NORMALIZED LEAST-MEAN-SQUARE ALGORITHMS WITH MINIMAX CONCAVE PENALTY

被引:0
|
作者
Kaneko, Hiroyuki [1 ]
Yukawa, Masahiro [1 ,2 ]
机构
[1] Keio Univ, Dept Elect & Elect Engn, Tokyo, Japan
[2] RIKEN, Ctr Adv Intelligence Project, Wako, Saitama, Japan
关键词
adaptive filtering; normalized least-mean-square algorithm; minimax concave penalty; proximal forward-backward splitting; soft/firm shrinkage; SIGNAL RECOVERY; SPARSE; LMS;
D O I
10.1109/icassp40776.2020.9053638
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We propose a novel problem formulation for sparsity-aware adaptive filtering based on the nonconvex minimax concave (MC) penalty, aiming to obtain a sparse solution with small estimation bias. We present two algorithms: the first algorithm uses a single firm-shrinkage operation, while the second one uses double soft-shrinkage operations. The twin soft-shrinkage operations compensate each other, promoting sparsity while avoiding a serious increase of biases. The whole cost function is convex in certain parameter settings, while the instantaneous cost function is always nonconvex. Numerical examples show the superiority compared to the existing sparsity-aware adaptive filtering algorithms in system mismatch and sparseness of the solution.
引用
收藏
页码:5445 / 5449
页数:5
相关论文
共 50 条
  • [1] On the convergence rate performance of the normalized least-mean-square adaptation
    An, PE
    Brown, M
    Harris, CJ
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (05): : 1211 - 1214
  • [2] ON WHITENING FOR KRYLOV-PROPORTIONATE NORMALIZED LEAST-MEAN-SQUARE ALGORITHM
    Yukawa, Masahiro
    2008 IEEE WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2008, : 315 - 320
  • [3] Nonnegative Least-Mean-Square Algorithm
    Chen, Jie
    Richard, Cedric
    Bermudez, Jose Carlos M.
    Honeine, Paul
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (11) : 5225 - 5235
  • [4] A fast convergence normalized least-mean-square type algorithm for adaptive filtering
    Benallal, A.
    Arezki, M.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2014, 28 (10) : 1073 - 1080
  • [5] DELAYED LEAST-MEAN-SQUARE ALGORITHM
    WANG, T
    WANG, CL
    ELECTRONICS LETTERS, 1995, 31 (07) : 524 - 526
  • [6] The kernel least-mean-square algorithm
    Liu, Weifeng
    Pokharel, Puskal P.
    Principe, Jose C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (02) : 543 - 554
  • [7] An Improved Proportionate Normalized Least-Mean-Square Algorithm for Broadband Multipath Channel Estimation
    Li, Yingsong
    Hamamura, Masanori
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [8] A normalized data-reusing Least-Mean-Square algorithm of noise cancellation for magnetocardiography
    Kong, XY
    Wang, HW
    Tian, Y
    Huang, XG
    Zhang, LH
    Ren, YF
    Chen, GH
    Yang, QS
    CHINESE PHYSICS, 2004, 13 (11): : 1820 - 1825
  • [9] An improved sparsity-aware normalized least-mean-square scheme for underwater communication
    Kumar, Anand
    Kumar, Prashant
    ETRI JOURNAL, 2023, 45 (03) : 379 - 393
  • [10] Stabilization of a Bias-Compensated Normalized Least-Mean-Square Algorithm for Noisy Inputs
    Jung, Sang Mok
    Park, PooGyeon
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (11) : 2949 - 2961