New fixed point results for E-metric spaces

被引:16
作者
Mehmood, Nayyar [1 ,2 ]
Al Rawashdeh, Ahmed [2 ]
Radenovic, Stojan [3 ]
机构
[1] Int Islamic Univ, Dept Math & Stat, H-10, Islamabad, Pakistan
[2] UAE Univ, Dept Math Sci, Coll Sci, Al Ain 15551, U Arab Emirates
[3] King Saud Univ, Dept Math, Coll Sci, Riyadh 11451, Saudi Arabia
关键词
Semi-interior points; Non-solid cones; Fixed points; e-Convergence; THEOREMS;
D O I
10.1007/s11117-019-00653-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new convergence criteria using the concept of semi-interior points has been defined in E-metric spaces with non-solid and non-normal set of positive elements E+ of a real normed space E, also known as a positive cone. Many examples are provided to insure the existence of semi-interior points of E+ with empty interior. New generalizations of Banach, Kannan and Chatterjea fixed point theorems are proved.
引用
收藏
页码:1101 / 1111
页数:11
相关论文
共 23 条
[1]  
[Anonymous], 2013, Asian J. Math. Appl.
[2]  
[Anonymous], THEORY DIFFERENTIAL
[3]  
[Anonymous], 2012, Int. J. Math. Math. Sci.
[4]  
[Anonymous], 1980, Publ. Inst. Math.
[5]  
[Anonymous], 2009, INT J MATH MATH SCI
[6]  
[Anonymous], 2010, NONLINEAR FUNCTIONAL
[7]  
[Anonymous], 1905, Bull. Soc. Math. Fr., DOI [10.24033/bsmf.741, DOI 10.24033/BSMF.741]
[8]   Multivalued fixed point theorems in tvs-cone metric spaces [J].
Azam, Akbar ;
Mehmood, Nayyar .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[9]  
Banach S., 1922, Fund. Maths., V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
[10]   Cones with semi-interior points and equilibrium [J].
Basile, Achille ;
Graziano, Maria Gabriella ;
Papadaki, Maria ;
Polyrakis, Ioannis A. .
JOURNAL OF MATHEMATICAL ECONOMICS, 2017, 71 :36-48