Fusion Estimation for Multi-sensor Nonlinear System with Disorder and Packet Loss

被引:0
作者
Zhang, Ke Wei [1 ,2 ]
Hao, Gang [1 ,2 ]
Li, Yun [3 ]
Zhao, Ming [3 ]
Li, Hui [3 ]
机构
[1] Heilongjiang Univ, Sch Elect Engn, Harbin 150080, Heilongjiang, Peoples R China
[2] Key Lab Informat Fus Estimat & Detect, Harbin, Heilongjiang, Peoples R China
[3] Harbin Univ Commerce, Sch Comp & Informat Engn, Harbin 150030, Peoples R China
来源
PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020) | 2020年
关键词
Information Fusion; Nonlinear Systems; Cubature Kalman Filter; Disorder; Packet Loss; RANDOM TRANSMISSION DELAYS; RANDOM PARAMETER MATRICES; STOCHASTIC NONLINEARITIES; FADING MEASUREMENTS; NETWORKED SYSTEMS; FILTER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a multi-sensor nonlinear system with disorder and packet loss, a fusion estimation algorithm is presented in this paper. Firstly, for equally spaced measurement sampling system, the disorder measurement is sorted by using measurement prediction in the group. Then, for the packet loss case, the lasted measurement is used for filtering. Combining the above proposed algorithm with the centralized Cubature Kalman filter (CKF), a fusion estimation algorithm for multi-sensor nonlinear system with disorder and packet loss algorithm is presented. In the simulation, the proposed algorithm is applied to an indoor positioning system based on ultra-wideband (UWB) with three sensors. The results show the effectiveness of the proposed algorithm.
引用
收藏
页码:1231 / 1236
页数:6
相关论文
共 25 条
[1]   Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances [J].
Alarifi, Abdulrahman ;
Al-Salman, AbdulMalik ;
Alsaleh, Mansour ;
Alnafessah, Ahmad ;
Al-Hadhrami, Suheer ;
Al-Ammar, Mai A. ;
Al-Khalifa, Hend S. .
SENSORS, 2016, 16 (05)
[2]   Cubature Kalman Filtering for Continuous-Discrete Systems: Theory and Simulations [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Hurd, Thomas R. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (10) :4977-4993
[3]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[4]  
Bar-Shalom Yaakov, 1995, Multitarget-Multisensor Tracking: Principles and Techniques, V19
[5]  
Bruno G. S., 2004, AC SPEECH SIGN PROC
[6]  
Calabrese A, 2014, 2014 IEEE WORKSHOP ON ENVIRONMENTAL ENERGY AND STRUCTURAL MONITORING SYSTEMS (EESMS), P40
[7]  
Caracciolo R, 2006, MECCANICA, V41, P623, DOI [10.1007/s11012-006-9008-8, 10.1007/S11012-006-9008-8]
[8]  
Hernandez G.M., 2018, NEUROCOMPUTING
[9]   Recursive filtering with random parameter matrices, multiple fading measurements and correlated noises [J].
Hu, Jun ;
Wang, Zidong ;
Gao, Huijun .
AUTOMATICA, 2013, 49 (11) :3440-3448
[10]  
Jing M., 2011, CONTROL THEORY COMMI