Ascending chain condition for log canonical thresholds and termination of log flips

被引:40
作者
Birkar, Caucher [1 ]
机构
[1] Ctr Math Sci, Dept Pure Math & Math Stat, Cambridge CB3 0WB, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1215/S0012-7094-07-13615-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the ascending chain condition (ACC) for log canonical (lc) thresholds in dimension d, existence of log flips in dimension d, and the log minimal model program (LMMP) in dimension d - 1 imply termination of any sequence of log flips starting with a d-dimensional effective lc pair and also imply termination of flops in dimension d. In particular, the latter terminations in dimension 4 follow from the Alexecv-Borisov conjecture in dimension 3.
引用
收藏
页码:173 / 180
页数:8
相关论文
共 13 条
[1]  
Alexeev V., 1994, Internat. J. Math, V5, P779, DOI DOI 10.1142/S0129167X94000395
[2]  
[Anonymous], 2003, Tr. Mat. Inst. Steklova, V240, P82
[3]   On termination of 4-fold semi-stable log flips [J].
Fujino, O .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2005, 41 (02) :281-294
[4]   Addendum to "termination of 4-fold canonical flips" [J].
Fujino, O .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2005, 41 (01) :251-257
[5]   Termination of 4-fold canonical flips [J].
Fujino, O .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2004, 40 (01) :231-237
[6]  
Kawamata Y., 1987, ADV STUDIES PURE MAT, V10, P283
[7]  
Kawamata Y., 1992, Int. J. Math, V3, P653, DOI [DOI 10.1142/S0129167X92000308, 10.1142/S0129167X92000308]
[8]  
Kollar J., 1995, P S PURE MATH, V62, P221
[9]   TERMINATION OF FLOPS FOR 4-FOLDS [J].
MATSUKI, K .
AMERICAN JOURNAL OF MATHEMATICS, 1991, 113 (05) :835-859
[10]   Threefold thresholds [J].
McKernan, J ;
Prokhorov, Y .
MANUSCRIPTA MATHEMATICA, 2004, 114 (03) :281-304