Unitary propagators for N-body Schrodinger equations in external field

被引:1
作者
Yajima, Kenji [1 ]
机构
[1] Gakushuin Univ, Dept Math, Toshima Ku, 1-5-1 Mejiro, Tokyo 1718588, Japan
关键词
Schrodinger equations; unitary propagator; EVOLUTION-EQUATIONS; SMOOTHING PROPERTY; EXISTENCE; OPERATORS; REGULARITY;
D O I
10.1142/S0129055X20600028
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report our recent results on the existence and uniqueness of unitary propagators for N-particle Schrodinger equations which may be applied to most interesting problems in physics.
引用
收藏
页数:24
相关论文
共 33 条
[1]   SCHRODINGER EQUATIONS WITH TIME-DEPENDENT STRONG MAGNETIC FIELDS [J].
Aiba, D. ;
Yajima, K. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2014, 25 (02) :175-194
[2]  
Asada K., 1978, Japan. J. Math. (N.S.), V4, P299
[3]  
CYCON HL, 1987, SCHRODINGER OPERATOR
[4]   REGULARITY OF BOUND STATES [J].
Faupin, Jeremy ;
Moller, Jacob Schach ;
Skibsted, Erik .
REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (05) :453-530
[5]   REMARKS ON CONVERGENCE OF THE FEYNMAN PATH-INTEGRALS [J].
FUJIWARA, D .
DUKE MATHEMATICAL JOURNAL, 1980, 47 (03) :559-600
[6]  
HUNZIKER W, 1986, ANN I H POINCARE-PHY, V45, P339
[7]  
Ichinose W, 1995, OSAKA J MATH, V32, P327
[8]   ESSENTIAL SELF-ADJOINTNESS OF THE SCHRODINGER-OPERATORS WITH MAGNETIC-FIELDS DIVERGING AT INFINITY [J].
IWATSUKA, A .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (05) :841-860
[10]   On nonlinear Schrodinger equations .2. H-S-solutions and unconditional well-posedness [J].
Kato, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1995, 67 :281-306