ON THE LONG TIME BEHAVIOR OF FREE STOCHASTIC SCHRODINGER EVOLUTIONS

被引:11
作者
Bassi, Angelo [1 ,2 ]
Duerr, Detlef [3 ]
Kolb, Martin [3 ]
机构
[1] Univ Trieste, Dept Phys, I-34151 Trieste, Italy
[2] Ist Nazl Fis Nucl, Trieste Sect, I-34127 Trieste, Italy
[3] LMU, Math Inst, D-80333 Munich, Germany
关键词
Collapse models; GRW-model; Hilbert space valued diffusions; large time behavior; HILBERT-SPACE; STATE-VECTOR; QUANTUM MEASUREMENT; REDUCTION; EQUATIONS; DYNAMICS; PARTICLE; MODELS; LOCALIZATION; ASYMPTOTICS;
D O I
10.1142/S0129055X10003886
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss the time evolution of the wave function which is the solution of a stochastic Schrodinger equation describing the dynamics of a free quantum particle subject to spontaneous localizations in space. We prove global existence and uniqueness of solutions. We observe that there exist three time regimes: the collapse regime, the classical regime and the diffusive regime. Concerning the latter, we assert that the general solution converges almost surely to a diffusing Gaussian wave function having a finite spread both in position as well as in momentum. This paper corrects and completes earlier works on this issue.
引用
收藏
页码:55 / 89
页数:35
相关论文
共 54 条
[1]  
Adler S. L., 2004, Quantum Theory as an emergent phenomenon
[2]   Martingale models for quantum state reduction [J].
Adler, SL ;
Brody, DC ;
Brun, TA ;
Hughston, LP .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :8795-8820
[3]   Generalized stochastic Schrodinger equations for state vector collapse [J].
Adler, SL ;
Brun, TA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (23) :4797-4809
[4]   A density tensor hierarchy for open system dynamics: retrieving the noise [J].
Adler, Stephen L. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (30) :8959-8990
[5]   Is Quantum Theory Exact? [J].
Adler, Stephen L. ;
Bassi, Angelo .
SCIENCE, 2009, 325 (5938) :275-276
[6]   Continuous quantum measurement: Local and global approaches [J].
Albeverio, S ;
KolokoL'Tsov, VN ;
Smolyanov, OG .
REVIEWS IN MATHEMATICAL PHYSICS, 1997, 9 (08) :907-920
[7]  
[Anonymous], 2000, LECT NOTES MATH
[8]  
[Anonymous], CAMBRIDGE STUDIES AD
[9]  
Barchielli A., 1990, Quantum Optics, V2, P423, DOI 10.1088/0954-8998/2/6/002
[10]  
Barchielli A., 1993, Reports on Mathematical Physics, V33, P21, DOI 10.1016/0034-4877(93)90037-F