Regularity of the obstacle problem for a fractional power of the Laplace operator

被引:901
作者
Silvestre, Luis [1 ]
机构
[1] Univ Texas, Austin, TX 78712 USA
关键词
D O I
10.1002/cpa.20153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a function phi and s is an element of (0, 1), we will study the solutions of the following obstacle problem: center dot u > phi in R-n, center dot (-Delta)(s)u >= 0 in R-n, center dot (-Delta)(s)u (x) = 0 for those x such that u (x) > phi(x), center dot lim(vertical bar x vertical bar ->+infinity) u(x) = 0. We show that when phi is C-1,C-s or,smoother, the solution u is in the space C-1,C-alpha for every alpha < s. In the case where the contact set {u = phi} is convex, we prove the optimal regularity result u is an element of C-1,C-s. When phi is only C-1,C-beta for a beta < s, we prove that our solution u is C-1,C-alpha for every ce < 6. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:67 / 112
页数:46
相关论文
共 14 条
[1]  
ATHANASOPOULOS I, OPTIMAL REGULARITY L
[2]   Perpetual American options under Levy processes [J].
Boyarchenko, SI ;
Levendorskii, SZ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 40 (06) :1663-1696
[3]  
Caffarelli L. A., 1979, COMMUN PART DIFF EQ, V4, P1067
[4]   The obstacle problem revisited [J].
Caffarelli, LA .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :383-402
[5]   POTENTIAL METHODS IN VARIATIONAL-INEQUALITIES [J].
CAFFARELLI, LA ;
KINDERLEHRER, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 37 :285-295
[6]  
Cont R., 2004, CHAPMAN HALL CRC FIN
[7]  
FREHSE J, 1972, B UNIONE MAT ITAL, V6, P312
[8]  
Gilbarg D, 1998, Elliptic Partial Differential Equations of Second Order, V224
[9]  
Landkof NS., 1972, FDN MODERN POTENTIAL
[10]  
Levendorskii S. Z., 2004, Int. J. Theor. Appl. Finance, V7, P303, DOI DOI 10.1142/S0219024904002463