Processed xenogenic cartilage as innovative biomatrix for cartilage tissue engineering: effects on chondrocyte differentiation and function

被引:65
|
作者
Schwarz, Silke [1 ]
Elsaesser, Alexander F. [1 ]
Koerber, Ludwig [2 ]
Goldberg-Bockhorn, Eva [1 ]
Seitz, Andreas M. [3 ]
Bermueller, Christian [1 ]
Duerselen, Lutz [3 ]
Ignatius, Anita [3 ]
Breiter, Roman [2 ]
Rotter, Nicole [1 ]
机构
[1] Univ Ulm, Dept Otorhinolaryngol, Med Ctr, Frauensteige 12, D-89075 Ulm, Germany
[2] Univ Erlangen Nurnberg, Inst Bioproc Engn, Erlangen, Germany
[3] Univ Ulm, Ctr Musculoskeletal Res Ulm, Inst Orthopaed Res & Biomech, D-89075 Ulm, Germany
关键词
cell differentiation; extracellular matrix; cartilage tissue engineering; 3D cell culture; cartilage reconstruction; xenogenic implant matrix; HUMAN ARTICULAR CHONDROCYTES; SODIUM-HYDROXIDE; GENE-EXPRESSION; HUMAN EAR; SEPTAL CHONDROCYTES; COLLAGEN SCAFFOLDS; NASAL CHONDROCYTES; GROWTH-FACTORS; CELL-ADHESION; PORE-SIZE;
D O I
10.1002/term.1650
中图分类号
Q813 [细胞工程];
学科分类号
摘要
One key point in the development of new bioimplant matrices for the reconstruction and replacement of cartilage defects is to provide an adequate microenvironment to ensure chondrocyte migration and de novo synthesis of cartilage-specific extracellular matrix (ECM). A recently developed decellularization and sterilization process maintains the three-dimensional (3D) collagen structure of native septal cartilage while increasing matrix porosity, which is considered to be crucial for cartilage tissue engineering. Human primary nasal septal chondrocytes were amplified in monolayer culture and 3D-cultured on processed porcine nasal septal cartilage scaffolds. The influence of chondrogenic growth factors on neosynthesis of ECM proteins was examined at the protein and gene expression levels. Seeding experiments demonstrated that processed xenogenic cartilage matrices provide excellent environmental properties for human nasal septal chondrocytes with respect to cell adhesion, migration into the matrix and neosynthesis of cartilage-specific ECM proteins, such as collagen type II and aggrecan. Matrix biomechanical stability indicated that the constructs retrieve full stability and function during 3D culture for up to 42 days, proportional to collagen type II and GAG production. Thus, processed xenogenic cartilage offers a suitable environment for human nasal chondrocytes and has promising potential for cartilage tissue engineering in the head and neck region. Copyright (C) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:E239 / E251
页数:13
相关论文
共 50 条
  • [41] Scaffolds for tissue engineering of cartilage
    Woodfield, TBF
    Bezemer, JM
    Pieper, JS
    van Blitterswijk, CA
    Riesle, J
    CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION, 2002, 12 (03): : 209 - 236
  • [42] BIOREACTOR FOR CARTILAGE TISSUE ENGINEERING
    Mikulenka, Petr
    Franta, Lukas
    Daniel, Matej
    25TH DANUBIA-ADRIA SYMPOSIUM ON ADVANCES IN EXPERIMENTAL MECHANICS, 2008, : 173 - 174
  • [43] Perspectives on cartilage tissue engineering
    Schneider, U
    AKTUELLE RHEUMATOLOGIE, 2003, 28 (06) : 322 - 327
  • [44] Biomechanics in cartilage tissue engineering
    Zhang C.
    Li K.
    Gao L.
    Zhang X.
    Advances in Mechanics, 2018, 48 (01) : 410 - 437
  • [45] Bioreactors for Tissue Engineering of Cartilage
    Concaro, S.
    Gustavson, F.
    Gatenholm, P.
    BIOREACTOR SYSTEMS FOR TISSUE ENGINEERING, 2009, 112 : 125 - 143
  • [47] Tissue engineering of cartilage in space
    Freed, LE
    Langer, R
    Martin, I
    Pellis, NR
    VunjakNovakovic, G
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (25) : 13885 - 13890
  • [48] Articular Cartilage Tissue Engineering
    Athanasiou, Kyriacos A.
    Darling, Eric M.
    Hu, Jerry C.
    Synthesis Lectures on Tissue Engineering, 2010, 1 (01): : 1 - 182
  • [49] Tissue engineering of meniscal cartilage
    Neves, AA
    Medcalf, N
    Brindle, KM
    ANIMAL CELL TECHNOLOGY: FROM TARGET TO MARKET, 2001, 1 : 571 - 573
  • [50] In vivo cartilage tissue engineering
    Gurer, B.
    Cabuk, S.
    Karakus, O.
    Yilmaz, N.
    Yilmaz, C.
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2018, 13