How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits

被引:332
作者
Gidney, Craig [1 ]
Ekera, Martin [2 ,3 ]
机构
[1] Google Inc, Santa Barbara, CA 93117 USA
[2] KTH Royal Inst Technol, SE-10044 Stockholm, Sweden
[3] Swedish NCSA, Swedish Armed Forces, SE-10785 Stockholm, Sweden
关键词
DISCRETE LOGARITHMS; QUANTUM ALGORITHMS; ARCHITECTURE; NETWORKS; MULTIPLICATION; CODES;
D O I
10.22331/q-2021-04-15-433
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We significantly reduce the cost of factoring integers and computing discrete logarithms in finite fields on a quantum computer by combining techniques from Shor 1994, Griffiths-Niu 1996, Zalka 2006, Fowler 2012, Ekera-Hastad 2017, Ekerg, 2017, EkerS, 2018, Gidney-Fowler 2019, Gidney 2019. We estimate the approximate cost of our construction using plausible physical assumptions for large-scale superconducting qubit platforms: a planar grid of qubits with nearest-neighbor connectivity, a characteristic physical gate error rate of 10(-3), a surface code cycle time of 1. microsecond, and a reaction time of 1.0 microseconds. We account for factors that are normally ignored such as noise, the need to make repeated attempts, and the spacetime layout of the computation. When factoring 2048 bit RSA integers, our construction's spacetime volume is a hundredfold less than comparable estimates from earlier works (Van Meter et al. 2009, Jones et al. 2010, Fowler et al. 2012, Gheorghiu et al. 2019). In the abstract circuit model (which ignores overheads from distillation, routing, and error correction) our construction uses 3n + 0.002n lg n logical qubits, 0.3n(3) + 0.0005n(3) lg n Toffolis, and 500n(2) +n(2) lg n measurement depth to factor n-bit RSA integers. We quantify the cryptographic implications of our work, both for RSA and for schemes based on the DLP in finite fields.
引用
收藏
页数:31
相关论文
共 87 条
[1]  
Alagic G., 2019, Status report on the first round of the NIST post-quantum cryptography standardization process, DOI DOI 10.6028/NIST.IR.8240
[2]  
[Anonymous], 2017, QUANTUM INF COMPUT
[3]   Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity [J].
Babbush, Ryan ;
Gidney, Craig ;
Berry, Dominic W. ;
Wiebe, Nathan ;
McClean, Jarrod ;
Paler, Alexandra ;
Fowler, Austin ;
Neven, Hartmut .
PHYSICAL REVIEW X, 2018, 8 (04)
[4]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[5]  
Barker E., 2019, NIST SP, DOI DOI 10.6028/NIST.SP.800-56BR2
[6]  
Barker E., 2018, Recommendation for Pair-Wise-Key Establishment Schemes Using Discrete Logarithm Cryptography, DOI [10.6028/NIST.SP.800-56Ar3, DOI 10.6028/NIST.SP.800-56AR3]
[7]  
Beauregard S, 2003, QUANTUM INF COMPUT, V3, P175
[8]   Efficient networks for quantum factoring [J].
Beckman, D ;
Chari, AN ;
Devabhaktuni, S ;
Preskill, J .
PHYSICAL REVIEW A, 1996, 54 (02) :1034-1063
[9]   Qubitization of Arbitrary Basis Quantum Chemistry Leveraging Sparsity and Low Rank Factorization [J].
Berry, Dominic W. ;
Gidney, Craig ;
Motta, Mario ;
McClean, Jarrod R. ;
Babbush, Ryan .
QUANTUM, 2019, 3
[10]  
BlueKrypt, 2019, CRYPT KEY LENGTH REC