Graphene-based flexible electronic devices

被引:216
|
作者
Han, Tae-Hee [1 ]
Kim, Hobeom [2 ]
Kwon, Sung-Joo [2 ]
Lee, Tae-Woo [1 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, Gyungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene; Flexible electronics; Transparent electrodes; Organic light-emitting diodes; Organic Solar cells; Organic transistors; Encapsulation; LIGHT-EMITTING-DIODES; ORGANIC SOLAR-CELLS; INDIUM-TIN-OXIDE; N-DOPED GRAPHENE; FIELD-EFFECT TRANSISTORS; GAS-DIFFUSION BARRIERS; SINGLE-LAYER GRAPHENE; HIGH-PERFORMANCE; TRANSPARENT ELECTRODES; CHARGE-TRANSFER;
D O I
10.1016/j.mser.2017.05.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flexible electronic devices fabricated on plastic substrate are more desirable than rigid counterparts for future displays, lightings, or solar cells. For flexible electronics to become practical, the indium-tin-oxide (ITO) electrode should be replaced due to its brittleness, increasing cost, and chemical instability. Graphene has emerged as a promising material for flexible transparent conducting electrodes because-of its unique electronic and mechanical properties with high optical transmittance. Therefore, graphene has been widely used in flexible electronic devices including light-emitting diodes (LEDs), solar cells (SCs), and field-effect transistors (FETs). However, for practical applications-of graphene in flexible electronics, its limitations should also be overcome. This review describes the use of graphene in LEDs, SCs and FETs, and various strategies to overcome the deficiencies of graphene to obtain highly-efficient and stable flexible electronics. Finally, we present future prospects and suggest further directions for research On graphene-based flexible electronic devices. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 43
页数:43
相关论文
共 50 条
  • [11] Emerging Graphene-Based Electronic & Photonic Devices, Circuits, and Systems
    Towe, Elias
    Palacios, Tomas
    Suemitsu, Maki
    PROCEEDINGS OF THE IEEE, 2013, 101 (07) : 1518 - 1521
  • [12] Recent Advances in the Fabrication of Graphene-based Flexible Electronic Devices by Laser Direct Writing
    Lu L.
    Wang W.
    Xie Y.
    Tang Y.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (21): : 234 - 247
  • [13] Laser Fabrication of Graphene-Based Flexible Electronics
    You, Rui
    Liu, Yu-Qing
    Hao, Yi-Long
    Han, Dong-Doug
    Zhang, Yong-Lai
    You, Zheng
    ADVANCED MATERIALS, 2020, 32 (15)
  • [14] Graphene-based materials for flexible energy storage devices
    Kena Chen
    Qingrong Wang
    Zhiqiang Niu
    Jun Chen
    Journal of Energy Chemistry , 2018, (01) : 12 - 24
  • [15] Graphene-based materials for flexible energy storage devices
    Chen, Kena
    Wang, Qingrong
    Niu, Zhiqiang
    Chen, Jun
    JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (01) : 12 - 24
  • [16] Bioinspired graphene-based nanocomposites and their application in electronic devices
    Wan S.
    Hu W.
    Jiang L.
    Cheng Q.
    Kexue Tongbao/Chinese Science Bulletin, 2017, 62 (27): : 3173 - 3200
  • [17] Laser-Induced Graphene Based Flexible Electronic Devices
    Wang, Hao
    Zhao, Zifen
    Liu, Panpan
    Guo, Xiaogang
    BIOSENSORS-BASEL, 2022, 12 (02):
  • [18] Graphene-based flexible and wearable electronics
    Das, Tanmoy
    Sharma, Bhupendra K.
    Katiyar, Ajit K.
    Ahn, Jong-Hyun
    JOURNAL OF SEMICONDUCTORS, 2018, 39 (01)
  • [19] Graphene-based devices for measuring pH
    Salvo, P.
    Melai, B.
    Calisi, N.
    Paoletti, C.
    Bellagambi, F.
    Kirchhain, A.
    Trivella, M. G.
    Fuoco, R.
    Di Francesco, F.
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 256 : 976 - 991
  • [20] Graphene-based flexible and wearable electronics
    Tanmoy Das
    Bhupendra K.Sharma
    Ajit K.Katiyar
    Jong-Hyun Ahn
    Journal of Semiconductors, 2018, (01) : 90 - 108