Real-time precise point positioning with a low-cost dual-frequency GNSS device

被引:98
|
作者
Nie, Zhixi [1 ,2 ]
Liu, Fei [2 ,3 ]
Gao, Yang [2 ]
机构
[1] China Univ Petr, Sch Geosci, Qingdao, Shandong, Peoples R China
[2] Univ Calgary, Schulich Sch Engn, Calgary, AB, Canada
[3] Profound Positioning Inc, Calgary, AB, Canada
关键词
Low-cost; GNSS; Real-time; Dual-frequency; PPP; SINGLE-FREQUENCY; GPS; CLOCK; EARTHQUAKE; PREDICTION; PROSPECTS; MODEL; ORBIT; IGS;
D O I
10.1007/s10291-019-0922-3
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In recent years, there is an increasing demand for precise positioning with low-cost GNSS devices in support of applications from self-driving cars to unmanned aerial vehicles. Although single-frequency GNSS devices are still dominant in the low-cost market to date, some GNSS manufacturers have released low-cost dual-frequency GNSS devices, which are able to track new civilian signals such as L2C or L5. With dual-frequency GNSS measurements, the ionospheric delays can be eliminated by forming ionospheric-free combinations to further improve the positioning accuracy and reliability with low-cost GNSS devices. Extensive work has been conducted in the past for precise point positioning using high-end dual-frequency GNSS receivers. For low-cost GNSS-based PPP, there are some issues that need to be addressed. One is that current low-cost dual-frequency receivers can track only civil signals but not all GPS satellites currently transmit L2C or L5 civil signals. This means that fewer dual-frequency GNSS measurements are available for position determination. Another is that the measurement quality of low-cost receivers is not as good as high-end receivers. The above will not only increase the convergence time but also affect the obtainable positioning accuracy. We propose a new method in which not only the conventional dual-frequency ionospheric-free code and phase measurements, but also the single-frequency ionosphere-corrected code measurements with precise ionospheric products, are adopted for position determination. To be more specific, ionospheric-free code and phase combinations are applied to satellites with the second civil signal, while the single-frequency ionosphere-corrected code measurement is applied to all observed satellites. Both stationary and automotive experiments have been conducted to assess the performance of the new method. The field test results show that it can quickly reach half-meter accuracy in horizontal at a much faster convergence speed than the conventional DF-PPP which would usually take several minutes to reach a similar accuracy. This indicates that the new method is more suitable for mass-market applications with low-cost GNSS devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Real-time precise point positioning with a low-cost dual-frequency GNSS device
    Zhixi Nie
    Fei Liu
    Yang Gao
    GPS Solutions, 2020, 24
  • [2] The Real-Time Detection of Vertical Displacements by Low-Cost GNSS Receivers Using Precise Point Positioning
    Maciejewska, Aleksandra
    Lackowski, Maciej
    Hadas, Tomasz
    Maciuk, Kamil
    SENSORS, 2024, 24 (17)
  • [3] Assessment of the Real-Time and Rapid Precise Point Positioning Performance Using Geodetic and Low-Cost GNSS Receivers
    Chen, Mengmeng
    Zhao, Lewen
    Zhai, Wei
    Lv, Yifei
    Jin, Shuanggen
    REMOTE SENSING, 2024, 16 (08)
  • [4] The positioning performance of low-cost GNSS receivers in the Precise Point Positioning method
    Karabulut, Mustafa Fahri
    Aykut, Nedim Onur
    Akpmar, Burak
    Topal, Gueldane Oku
    cakmak, Zuebeyir Bilal
    Doran, Bilge
    Dindar, Ahmet Anil
    Yigit, Cemal Oezer
    Bezcioglu, Mert
    Zafer, Anil
    ADVANCES IN GEODESY AND GEOINFORMATION, 2022, 71 (02)
  • [5] Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone
    Wu, Qiong
    Sun, Mengfei
    Zhou, Changjie
    Zhang, Peng
    SENSORS, 2019, 19 (09)
  • [6] Real-time multi-GNSS single-frequency precise point positioning
    Peter F. de Bakker
    Christian C. J. M. Tiberius
    GPS Solutions, 2017, 21 : 1791 - 1803
  • [7] Real-time multi-GNSS single-frequency precise point positioning
    de Bakker, Peter F.
    Tiberius, Christian C. J. M.
    GPS SOLUTIONS, 2017, 21 (04) : 1791 - 1803
  • [8] Feasibility of Using Low-Cost Dual-Frequency GNSS Receivers for Land Surveying
    Wielgocka, Natalia
    Hadas, Tomasz
    Kaczmarek, Adrian
    Marut, Grzegorz
    SENSORS, 2021, 21 (06) : 1 - 14
  • [9] Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning
    Kazmierski, Kamil
    Hadas, Tomasz
    Sosnica, Krzysztof
    REMOTE SENSING, 2018, 10 (01)
  • [10] PPP Performance of Dual-Frequency, Compact, Low-Cost GNSS Modules: A Novel Study
    Adebayo Segun Adewumi
    Somnath Mahato
    Susmita Samanta
    Anshula Das
    Anindya Bose
    MAPAN, 2025, 40 (2) : 421 - 428