Li-Zn Overlayer to Facilitate Uniform Lithium Deposition for Lithium Metal Batteries

被引:39
作者
Chen, Qiulin [1 ,2 ]
Li, Hao [3 ,4 ]
Meyerson, Melissa L. [3 ]
Rodriguez, Rodrigo [1 ]
Kawashima, Kenta [3 ]
Weeks, Jason A. [3 ]
Sun, Hohyun [1 ]
Xie, Qingshui [2 ]
Lin, Jie [2 ]
Henkelman, Graeme [3 ,4 ]
Heller, Adam [1 ]
Peng, Dong-Liang [2 ]
Mullins, C. Buddie [1 ,3 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Xiamen Univ, Coll Mat, State Key Lab Phys Chem Solid Surfaces, Fujian Key Lab Mat Genome, Xiamen 361005, Peoples R China
[3] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[4] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
基金
国家重点研发计划; 美国国家科学基金会; 中国国家自然科学基金;
关键词
Li metal anode; in-situ Li-alloy formation; alloy modifying layer; uniform nucleation and deposition; e-beam evaporation; ANODE; NUCLEATION; INTERPHASE; INTERFACE; DENSITY; GROWTH;
D O I
10.1021/acsami.0c21195
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The highly reactive nature and rough surface of Li foil can lead to the uncontrollable formation of Li dendrites when employed as an anode in a lithium metal battery. Thus, it could be of great practical utility to create uniform, electrochemically stable, and "lithiophilic" surfaces to realize homogeneous deposition of Li. Herein, a LiZn alloy layer is deposited on the surface of Li foil by e-beam evaporation. The idea is to introduce a uniform alloy surface to increase the active area and make use of the Zn sites to induce homogeneous nucleation of Li. The results show that the alloy film protected the Li metal anode, allowing for a longer cycling life with a lower deposition overpotential over a pure-Li metal anode in symmetric Li cells. Furthermore, full cells pairing the modified lithium anode with a LiFePO4 cathode showed an incremental increase in Coulombic efficiency compared with pure-Li. The concept of using only an alloy modifying layer by an in-situ e-beam deposition synthesis method offers a potential method for enabling lithium metal anodes for next-generation lithium batteries.
引用
收藏
页码:9985 / 9993
页数:9
相关论文
共 46 条
[41]   Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries [J].
Zhang, Chen ;
Lv, Wei ;
Zhou, Guangmin ;
Huang, Zhijia ;
Zhang, Yunbo ;
Lyu, Ruiyang ;
Wu, Haoliang ;
Yun, Qinbai ;
Kang, Feiyu ;
Yang, Quan-Hong .
ADVANCED ENERGY MATERIALS, 2018, 8 (21)
[42]   Ultrathin Al2O3-coated reduced graphene oxide membrane for stable lithium metal anode [J].
Zhang, Fan ;
Shen, Fei ;
Fan, Zhao-Yang ;
Ji, Xin ;
Zhao, Bin ;
Sun, Zhou-Ting ;
Xuan, Ying-Ying ;
Han, Xiao-Gang .
RARE METALS, 2018, 37 (06) :510-519
[43]   Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives [J].
Zhang, Heng ;
Gebresilassie Eshetu, Gebrekidan ;
Judez, Xabier ;
Li, Chunmei ;
Rodriguez-Martinez, Lide M. ;
Armand, Michel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (46) :15002-15027
[44]   Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination [J].
Zhang, Xinyue ;
Wang, Aoxuan ;
Liu, Xingjiang ;
Luo, Jiayan .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (11) :3223-3232
[45]   Compact 3D Copper with Uniform Porous Structure Derived by Electrochemical Dealloying as Dendrite-Free Lithium Metal Anode Current Collector [J].
Zhao, Heng ;
Lei, Danni ;
He, Yan-Bing ;
Yuan, Yifei ;
Yun, Qinbai ;
Ni, Bin ;
Lv, Wei ;
Li, Baohua ;
Yang, Quan-Hong ;
Kang, Feiyu ;
Lu, Jun .
ADVANCED ENERGY MATERIALS, 2018, 8 (19)
[46]   3D lithiophilic-lithiophobic-lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode [J].
Zheng, Hongfei ;
Zhang, Qingfei ;
Chen, Qiulin ;
Xu, Wanjie ;
Xie, Qingshui ;
Cai, Yuxin ;
Ma, Yating ;
Qiao, Zhensong ;
Luo, Qing ;
Lin, Jie ;
Wang, Laisen ;
Qu, Baihua ;
Sa, Baisheng ;
Peng, Dong-Liang .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (01) :313-322