NON-RELATIVISTIC GLOBAL LIMITS TO THE THREE DIMENSIONAL RELATIVISTIC EULER EQUATIONS WITH SPHERICAL SYMMETRY

被引:5
|
作者
Hao, Xingwen [1 ]
Li, Yachun [1 ]
Wang, Zejun [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Dept Math, Nanjing 210016, Peoples R China
关键词
Relativistic Euler equations; spherical symmetry; weak solutions; non-relativistic limits; shock curves; rarefaction wave curves; ENTROPY SOLUTIONS; LAWS;
D O I
10.3934/cpaa.2010.9.365
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As a fundamental and important step to understand the existence and behavior of solution to the multi-dimensional problem, we study in this paper the three dimensional relativistic Euler equations with spherical symmetry. We obtain the non-relativistic global limits of entropy solutions to the Cauchy problem of the spherically symmetric relativistic Euler equations.
引用
收藏
页码:365 / 386
页数:22
相关论文
共 50 条
  • [21] Global solutions for the ultra-relativistic Euler equations
    Abdelrahman, Mahmoud A. E.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 155 : 140 - 162
  • [22] The Non-Relativistic Limit for the e-MHD Equations
    Wang, Hongli
    Zhao, Jie
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [23] Two dimensional relativistic Euler equations in a convex duct
    Luan, Liping
    Chen, Jianjun
    Liu, Jianli
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) : 1084 - 1099
  • [24] SELF-SIMILAR SOLUTIONS OF THE RELATIVISTIC EULER SYSTEM WITH SPHERICAL SYMMETRY
    Lu, Bing-Ze
    Kao, Chou
    Lien, Wen-Ching
    QUARTERLY OF APPLIED MATHEMATICS, 2024, 82 (04) : 705 - 734
  • [25] Nonrelativistic limits for the 1D relativistic Euler equations with physical vacuum
    La-Su Mai
    Xiaoting Cao
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [26] Nonrelativistic limits for the 1D relativistic Euler equations with physical vacuum
    Mai, La-Su
    Cao, Xiaoting
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (05):
  • [27] Global smooth solutions to relativistic Euler-Poisson equations with repulsive force
    Geng, Yong-cai
    Wang, Lei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (04): : 1025 - 1036
  • [28] The ultra-relativistic Euler equations
    Abdelrahman, Mahmoud A. E.
    Kunik, Matthias
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (07) : 1247 - 1264
  • [29] Formation of singularities for the relativistic Euler equations
    Athanasiou, Nikolaos
    Zhu, Shengguo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 284 : 284 - 317
  • [30] DEVELOPMENT OF SINGULARITIES IN THE RELATIVISTIC EULER EQUATIONS
    Athanasiou, Nikolaos
    Bayles-rea, Tianrui
    Zhu, Shengguo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (04) : 2325 - 2372