Analysis of interval-grouped data in weed science: The binnednp Rcpp package

被引:6
作者
Barreiro-Ures, Daniel [1 ]
Francisco-Fernandez, Mario [1 ]
Cao, Ricardo [1 ]
Fraguela, Basilio B. [2 ]
Doallo, Ramon [2 ]
Luis Gonzalez-Andujar, Jose [3 ]
Reyes, Miguel [4 ]
机构
[1] Univ A Coruna, Fac Informat, Dept Matemat, Res Grp MODES,CITIC, La Coruna, Spain
[2] Univ A Coruna, Fac Informat, Dept Ingn Comp, Res Grp GAC,CITIC, La Coruna, Spain
[3] CSIC, Inst Agr Sostenible, Apartado 4084, Cordoba 14080, Spain
[4] Univ Americas Puebla, Dept Actuaria Fis & Matemat, Cholula, Mexico
关键词
bandwidth selection; hydrothermal time; nonparametric kernel estimation; weed emergence model; NONLINEAR-REGRESSION; EMERGENCE; GERMINATION; INDEXES; MODELS;
D O I
10.1002/ece3.5448
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Weed scientists are usually interested in the study of the distribution and density functions of the random variable that relates weed emergence with environmental indices like the hydrothermal time (HTT). However, in many situations, experimental data are presented in a grouped way and, therefore, the standard nonparametric kernel estimators cannot be computed. Kernel estimators for the density and distribution functions for interval-grouped data, as well as bootstrap confidence bands for these functions, have been proposed and implemented in the binnednp package. Analysis with different treatments can also be performed using a bootstrap approach and a Cramer-von Mises type distance. Several bandwidth selection procedures were also implemented. This package also allows to estimate different emergence indices that measure the shape of the data distribution. The values of these indices are useful for the selection of the soil depth at which HTT should be measured which, in turn, would maximize the predictive power of the proposed methods. This paper presents the functions of the package and provides an example using an emergence data set of Avena sterilis (wild oat). The binnednp package provides investigators with a unique set of tools allowing the weed science research community to analyze interval-grouped data.
引用
收藏
页码:10903 / 10915
页数:13
相关论文
共 26 条
[1]  
[Anonymous], 2004, SAGE DICT STAT
[2]   Modeling seed dormancy release and germination for predicting Avena fatua L. field emergence: A genetic algorithm approach [J].
Blanco, Anibal M. ;
Chantre, Guillermo R. ;
Lodovichi, Mariela V. ;
Alberto Bandoni, J. ;
Lopez, Ricardo L. ;
Vigna, Mario R. ;
Gigon, Ramon ;
Sabbatini, Mario R. .
ECOLOGICAL MODELLING, 2014, 272 :293-300
[3]  
Bradford KJ, 2002, WEED SCI, V50, P248, DOI 10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO
[4]  
2
[5]   Modeling Bromus diandrus Seedling Emergence Using Nonparametric Estimation [J].
Cao, R. ;
Francisco-Fernandez, M. ;
Anand, A. ;
Bastida, F. ;
Gonzalez-Andujar, J. L. .
JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2013, 18 (01) :64-86
[6]   Computing statistical indices for hydrothermal times using weed emergence data [J].
Cao, R. ;
Francisco-Fernandez, M. ;
Anand, A. ;
Bastida, F. ;
Gonzalez-Andujar, J. L. .
JOURNAL OF AGRICULTURAL SCIENCE, 2011, 149 :701-712
[7]   Modeling Avena fatua seedling emergence dynamics: An artificial neural network approach [J].
Chantre, Guillermo R. ;
Blanco, Anibal M. ;
Lodovichi, Mariela V. ;
Bandoni, Alberto J. ;
Sabbatini, Mario R. ;
Lopez, Ricardo L. ;
Vigna, Mario R. ;
Gigon, Ramon .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2012, 88 :95-102
[8]  
Eddelbuettel D, 2011, J STAT SOFTW, V40, P1
[9]   Modeling seedling emergence [J].
Forcella, F ;
Arnold, RLB ;
Sanchez, R ;
Ghersa, CM .
FIELD CROPS RESEARCH, 2000, 67 (02) :123-139
[10]   Predicting field weed emergence with empirical models and soft computing techniques [J].
Gonzalez-Andujar, J. L. ;
Chantre, G. R. ;
Morvillo, C. ;
Blanco, A. M. ;
Forcella, F. .
WEED RESEARCH, 2016, 56 (06) :415-423